17.已知冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3,$\frac{1}{3}$),則f(x)=x-1

分析 設(shè)出冪函數(shù)的解析式,用待定系數(shù)法求出f(x)的解析式.

解答 解:設(shè)冪函數(shù)y=f(x)=xa,
其圖象經(jīng)過(guò)點(diǎn)(3,$\frac{1}{3}$),
∴3a=$\frac{1}{3}$,解得a=-1;
∴f(x)=x-1
故答案為:x-1

點(diǎn)評(píng) 本題考查了用待定系數(shù)法求冪函數(shù)解析式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)m,n是兩條不同的直線,α,β是不同的平面,則下列命題中正確的是( 。
A.若α⊥β,m?α,n?β,則m⊥nB.若α∥β,m?α,n?β,則m∥n
C.若m⊥n,m?α,n?β,則α⊥βD.若m⊥α,m∥n,n∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若不等式f(x)-m+1<0在[$\frac{π}{6}$,$\frac{π}{2}$]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{(x+1)(x-1)}{x}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)若$A=\left\{{x\left|{x•f(x)≥0}\right.}\right\},B=\left\{{x\left|{y=\sqrt{2+x-{x^2}}}\right.}\right\}$,求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知兩直線l1:x+(m+1)y+m-2=0,l2:mx+2y+8=0.
(1)當(dāng)m為何值時(shí),直線l1與l2垂直;
(2)當(dāng)m為何值時(shí),直線l1與l2平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在空間直角坐標(biāo)系下,試判定直線l:$\left\{\begin{array}{l}{2x+y+z-1=0}\\{x+2y-z-2=0}\end{array}\right.$與平面π:3x-y+2z+1=0的位置關(guān)系,并求出直線l與平面π的夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(sinx+cosx,$\sqrt{2}$),$\overrightarrow$=(-$\sqrt{2}$cosx,$\frac{1}{2}$),設(shè)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.“|x|=2“是“x2-4=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知點(diǎn)P(2,-4),N(-1,5),M(-3,2),則2$\overrightarrow{PM}$+3$\overrightarrow{MN}$=(-8,15).

查看答案和解析>>

同步練習(xí)冊(cè)答案