1.曲線y=sin(2x+$\frac{π}{6}$)的一條對稱軸是( 。
A.y=-$\frac{5π}{12}$B.x=$\frac{5π}{12}$C.x=-$\frac{7π}{6}$D.x=$\frac{7π}{6}$

分析 由條件利用正弦函數(shù)的圖象的對稱性,得出結(jié)論.

解答 解:對于曲線y=sin(2x+$\frac{π}{6}$),令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
可得它的一條對稱軸方程為x=$\frac{7π}{6}$,
故選:D.

點(diǎn)評 本題主要考查正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{lnx}{x}$-x+$\frac{a}{x}$(a∈R).
(1)當(dāng)a=0時,求證:函數(shù)f(x)有且僅有一個極值點(diǎn);
(2)若對于任意的x1,x2∈[e,+∞]且x1≠x2,有不等式$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知cosα=$\frac{\sqrt{5}}{7}$,且sinα<0,則角α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在等腰梯形ABCD中,AB=2,CD=4,BC=$\sqrt{5}$,點(diǎn)E,F(xiàn)分別為AD,BC的中點(diǎn).如果對于常數(shù)λ,在等腰梯形ABCD的四條邊長,有且只有8個不同的點(diǎn)P,使得$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ成立,那么λ的取值范圍是(  )
A.(-$\frac{5}{4}$,-$\frac{9}{20}$)B.(-$\frac{9}{20}$,$\frac{11}{4}$)C.(-$\frac{9}{20}$,-$\frac{1}{4}$)D.(-$\frac{5}{4}$,$\frac{11}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某公司有員工100人,其中男員工60名,女員工40名,為了了解員工的業(yè)務(wù)水平,公司按照性別采用分層抽樣的方法抽取5人進(jìn)行考核.
(I)求抽取的5人中男、女員工的人數(shù);
(Ⅱ)考核前.評估小組打算從選出的5人中隨機(jī)選出2名員工進(jìn)行訪談,求選出的兩名員工中恰有一名女員工的概率;(Ⅲ)考核分答辯和筆試兩項,5位員工的筆試成績分別為115,125,105,111,109;結(jié)合答辯情況,他們的考核成績分別為125,130,115,121,119.這5位員工筆試成績與考核成績的方差分別記為${s}_{1}^{2}$,s${\;}_{2}^{2}$,試比較s${\;}_{1}^{2}$與s${\;}_{2}^{2}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知常數(shù)a>$\frac{1}{2}$,則函數(shù)y=x2+|x-a|+1的最小值為( 。
A.a+1B.a+$\frac{3}{4}$C.a2+1D.$\frac{3}{4}$-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知A(0,1),B(-3,4),若∠AOB的平分線交AB于D點(diǎn),則$\overrightarrow{AD}$=( 。
A.($\frac{1}{2}$,$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.($\frac{1}{2}$,-$\frac{1}{2}$)D.(-$\frac{1}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求定積分${∫}_{-1}^{0}$$\frac{{x}^{2}}{{x}^{2}+2x}$dx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點(diǎn)為F1(-$\sqrt{3}$,0),且過點(diǎn)E($\sqrt{3}$,$\frac{1}{2}$),設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,點(diǎn)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交x軸于點(diǎn)M,N.
(1)求橢圓C的方程;
(2)若直線PA1的斜率與直線PA2的斜率之和為1,求點(diǎn)M的坐標(biāo);
(3)求OM•ON的值.

查看答案和解析>>

同步練習(xí)冊答案