9.如圖,在等腰梯形ABCD中,AB=2,CD=4,BC=$\sqrt{5}$,點(diǎn)E,F(xiàn)分別為AD,BC的中點(diǎn).如果對于常數(shù)λ,在等腰梯形ABCD的四條邊長,有且只有8個不同的點(diǎn)P,使得$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ成立,那么λ的取值范圍是( 。
A.(-$\frac{5}{4}$,-$\frac{9}{20}$)B.(-$\frac{9}{20}$,$\frac{11}{4}$)C.(-$\frac{9}{20}$,-$\frac{1}{4}$)D.(-$\frac{5}{4}$,$\frac{11}{4}$)

分析 建立坐標(biāo)系,設(shè)P的坐標(biāo),根據(jù)$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ得到關(guān)于x的方程,根據(jù)P的位置分四種情況討論方程解得情況.

解答 解:以DC所在直線為x軸,DC的中垂線為y軸建立平面直角坐標(biāo)系,
則梯形的高為$\sqrt{(\sqrt{5})^{2}-{1}^{2}}$=2,∴A(-1,2),B(1,2),C(2,0),D(-2,0),∴E(-$\frac{3}{2}$,1),F(xiàn)($\frac{3}{2}$,1).
(1)當(dāng)P在DC上時,設(shè)P(x,0)(-2≤x≤2),則$\overrightarrow{PE}$=(-$\frac{3}{2}$-x,1)$\overrightarrow{PF}$=($\frac{3}{2}-x$,1).
于是$\overrightarrow{PE}•\overrightarrow{PF}$=(-$\frac{3}{2}$-x)($\frac{3}{2}$-x)+1=x2-$\frac{5}{4}$=λ,
∴當(dāng)λ=-$\frac{5}{4}$時,方程有一解,當(dāng)$-\frac{5}{4}$<λ≤$\frac{11}{4}$時,λ有兩解;
(2)當(dāng)P在AB上時,設(shè)P(x,2)(-1≤x≤1),則$\overrightarrow{PE}$=(-$\frac{3}{2}$-x,-1)$\overrightarrow{PF}$=($\frac{3}{2}-x$,-1).
于是$\overrightarrow{PE}•\overrightarrow{PF}$=(-$\frac{3}{2}$-x)($\frac{3}{2}$-x)+1=x2-$\frac{5}{4}$=λ,
∴當(dāng)λ=-$\frac{5}{4}$時,方程有一解,當(dāng)$-\frac{5}{4}$<λ≤-$\frac{1}{4}$時,λ有兩解;
(3)當(dāng)P在AD上時,直線AD方程為y=2x+4,
設(shè)P(x,2x+4)(-2<x<-1),則$\overrightarrow{PE}$=(-$\frac{3}{2}$-x,-2x-3)$\overrightarrow{PF}$=($\frac{3}{2}-x$,-2x-3).
于是$\overrightarrow{PE}•\overrightarrow{PF}$=(-$\frac{3}{2}$-x)($\frac{3}{2}$-x)+(-2x-3)2=5x2+12x+$\frac{27}{4}$=λ.
∴當(dāng)λ=-$\frac{9}{20}$或-$\frac{1}{4}$<λ<$\frac{9}{4}$時,方程有一解,當(dāng)-$\frac{9}{20}<λ<$-$\frac{1}{4}$時,方程有兩解;
(4)當(dāng)P在BC上時,直線BC的方程為y=-2x+4,
設(shè)P(x,-2x+4)(1<x<2),則$\overrightarrow{PE}$=(-$\frac{3}{2}$-x,2x-3)$\overrightarrow{PF}$=($\frac{3}{2}-x$,2x-3).
于是$\overrightarrow{PE}•\overrightarrow{PF}$=(-$\frac{3}{2}$-x)($\frac{3}{2}$-x)+(2x-3)2=5x2-12x+$\frac{27}{4}$=λ.
∴當(dāng)λ=-$\frac{9}{20}$或-$\frac{1}{4}$<λ<$\frac{9}{4}$時,方程有一解,當(dāng)-$\frac{9}{20}<λ<$-$\frac{1}{4}$時,方程有兩解;
綜上,若使梯形上有8個不同的點(diǎn)P滿足$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ成立,
則λ的取值范圍是(-$\frac{5}{4}$,$\frac{11}{4}$]∩(-$\frac{5}{4}$,-$\frac{1}{4}$]∩(-$\frac{9}{20}$,-$\frac{1}{4}$)∩(-$\frac{9}{20}$,-$\frac{1}{4}$)=(-$\frac{9}{20}$,-$\frac{1}{4}$).
故選:C.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,二次函數(shù)與二次方程的關(guān)系,分類討論思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè){an}是無窮數(shù)列,令a′k=$\frac{{a}_{k}+{a}_{k+1}}{2}$,(k=1,2,…),則稱{a′k}是{ak}的均值數(shù)列.仿此可定義,{a″k}是{a′k}的均值數(shù)列,且{a″k}是{a′k}的第二級均值數(shù)列.若{ak}的各級均值數(shù)列都是整數(shù)列,則稱{ak}是“好”數(shù)列,求證:若{ak}是“好”數(shù)列,則{ak2}也是“好”數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.柜子里有5雙不同的鞋,現(xiàn)從柜子里取出4只鞋.求:
(1)取出的鞋中至少有一雙的取法數(shù)目;
(2)取出的鞋中恰好有一雙的取法數(shù)目.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)P(m,m)為角α終邊上一點(diǎn),m∈R,且m∈R,且m≠0,則sinα=±$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.用計算器求在0°~360°范圍內(nèi)的角x(精確到0.01°).
(1)sinx=-0.25;
(2)cosx=0.52.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解不等式$\frac{(x+4a)(x-6a)}{2a+1}$>0(a為常數(shù),a≠-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線y=sin(2x+$\frac{π}{6}$)的一條對稱軸是( 。
A.y=-$\frac{5π}{12}$B.x=$\frac{5π}{12}$C.x=-$\frac{7π}{6}$D.x=$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若sinx+cosx=k,且sin3x+cos3x<0,那么k取值范圍是[-$\sqrt{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=2sinθ,過點(diǎn)P(0,1)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),直線l與軌跡C交于M,N兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)求|MN|.

查看答案和解析>>

同步練習(xí)冊答案