若a,b滿足cos
π
4
cosa-sin
4
sina=0,且cos(b+
π
3
)=sin(b-
π
3
),則tana,tanb的大小關(guān)系是
 
考點:同角三角函數(shù)基本關(guān)系的運用
專題:計算題,三角函數(shù)的求值
分析:先化簡條件,可得tana=tanb=1,即可得出結(jié)論.
解答: 解:∵cos
π
4
cosa-sin
4
sina=0,
∴tana=1,
∵cos(b+
π
3
)=sin(b-
π
3
),
∴cosbcos
π
3
-sinbsin
π
3
=sinbcos
π
3
-cosbsin
π
3
,
∴tanb=1.
故答案為:tana=tanb.
點評:本題考查兩角和、差的三角函數(shù),考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一件工作可以用兩種方法完成,有5人會用第1種方法完成,有4人會用第2種方法完成,從中選1人來完成這件工作,不同選法的總數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn,且2Sn=(n+1)an,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x-a≤0},B⊆∁UA,根據(jù)下列條件求a的取值范圍:
(1)B={x||x+1|>2};
(2)B={x||x+1|≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1-x2
1-y2
”是“|x|<|y|”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4,5,6},集合M={2,3,4,5},N={1,3,6},則[∁U(M∪N)]∩(M∩N)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用極限存在準(zhǔn)則證明
lim
n→∞
[
1
n2+1
+
1
n2+2
+…+
1
n2+n
]=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-e2x+2,函數(shù)g(x)=ln(mx+1)+
1-x
1+x
,其中x≥0,m>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對于任意的x≥0,若恒有g(shù)(x)≥f(x)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足不等式組
y≥0
2x-y≥0
2x-y-2≥0
,若z=x-3y,則z的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案