分析 (1)寫出分段函數(shù)$\left\{\begin{array}{l}{-\frac{3}{2}x-1,x<-2}\\{-\frac{1}{2}x+1,-2≤x≤0}\\{\frac{3}{2}x+1,x>0}\end{array}\right.$,確定函數(shù)的單調(diào)性,可得函數(shù)f(x)的最小值;
(2)由柯西不等式(a2+b2+c2)(12+22+32)≥(a+2b+3c)2=1,可得a2+b2+c2的最小值.
解答 解:(1)f(x)=$\left\{\begin{array}{l}{-\frac{3}{2}x-1,x<-2}\\{-\frac{1}{2}x+1,-2≤x≤0}\\{\frac{3}{2}x+1,x>0}\end{array}\right.$,
當(dāng)x∈(-∞,0]時,f(x)單調(diào)遞減,
當(dāng)x∈[0,+∞)時,f(x)單調(diào)遞增,
所以當(dāng)x=0時,f(x)的最小值m=1. …(5分)
(2)由柯西不等式(a2+b2+c2)(12+22+32)≥(a+2b+c)2=1,
故a2+b2+c2≥$\frac{1}{14}$,當(dāng)且僅當(dāng)a=$\frac{1}{14}$,b=$\frac{1}{7}$,c-$\frac{3}{14}$時取等號
∴a2+b2+c2的最小值為$\frac{1}{14}$.…(10分)
點(diǎn)評 本題考查絕對值不等式的解法,考查二維形式的柯西不等式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c=a;i≤9 | B. | b=c;i≤9 | C. | c=a;i≤10 | D. | b=c;i≤10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{113π}{16}$ | B. | $\frac{113π}{48}$ | C. | $\frac{113π}{64}$ | D. | $\frac{377π}{64}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com