【題目】已知橢圓的左、右焦點(diǎn)分別為是橢圓上一動(dòng)點(diǎn)(與左、右頂點(diǎn)不重合)已知的內(nèi)切圓半徑的最大值為,橢圓的離心率為.

1)求橢圓C的方程;

2)過的直線交橢圓兩點(diǎn),過軸的垂線交橢圓與另一點(diǎn)不與重合).設(shè)的外心為,求證為定值.

【答案】12)見解析

【解析】

1)當(dāng)面積最大時(shí),最大,即點(diǎn)位于橢圓短軸頂點(diǎn)時(shí),即可得到的值,再利用離心率求得,即可得答案;

2)由題意知,直線的斜率存在,且不為0,設(shè)直線,代入橢圓方程得.設(shè),利用弦長(zhǎng)公式求得,利用的垂直平分線方程求得的坐標(biāo),兩個(gè)都用表示,代入中,即可得答案.

1)由題意知:,.

設(shè)的內(nèi)切圓半徑為,

,

故當(dāng)面積最大時(shí),最大,即點(diǎn)位于橢圓短軸頂點(diǎn)時(shí),

所以,把代入,解得:,

所以橢圓方程為.

2)由題意知,直線的斜率存在,且不為0,設(shè)直線

代入橢圓方程得.

設(shè),則

所以的中點(diǎn)坐標(biāo)為

所以.

因?yàn)?/span>的外心,所以是線段的垂直平分線與線段的垂直平分線的交點(diǎn),的垂直平分線方程為,

,得,即,所以

所以,所以為定值,定值為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P是圓F1:(x+12+y216上任意一點(diǎn),F21,0),線段PF2的垂直平分線與半徑PF1交于點(diǎn)Q,當(dāng)點(diǎn)P在圓F1上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線C.

1)求曲線C的方程;

2)記曲線Cx軸交于A,B兩點(diǎn),M是直線x1上任意一點(diǎn),直線MA,MB與曲線C的另一個(gè)交點(diǎn)分別為DE,求證:直線DE過定點(diǎn)H4,0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若不等式的解集為,求a的值;

(2)在(1)的條件下,若存在,使,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為4,且過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為橢圓上一點(diǎn),過點(diǎn)軸的垂線,垂足為,取點(diǎn),連接,過點(diǎn)的垂線交軸于點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=exax1e為自然對(duì)數(shù)的底數(shù)),a0

1)若函數(shù)fx)恰有一個(gè)零點(diǎn),證明:aaea1

2)若fx≥0對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型工廠有6臺(tái)大型機(jī)器,在1個(gè)月中,1臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺(tái)機(jī)器的能力(若有2臺(tái)機(jī)器同時(shí)出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺(tái)維修,對(duì)工廠的正常運(yùn)行沒有任何影響),每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)能及時(shí)得到維修,就能使該廠獲得10萬(wàn)元的利潤(rùn),否則將虧損2萬(wàn)元.該工廠每月需支付給每名維修工人1萬(wàn)元的工資.

(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí),有工人進(jìn)行維修(例如:3臺(tái)大型機(jī)器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運(yùn)行.若該廠只有1名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有2名維修工人.

(。┯浽搹S每月獲利為萬(wàn)元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘1名維修工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,AE平面ABCDPDAE,PDAD2EA2G,F,H分別為BE,BP,PC的中點(diǎn).

1)求證:平面ABE平面GHF;

2)求直線GH與平面PBC所成的角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線方程為.

1)若函數(shù)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;

2)設(shè),對(duì)于,的值域?yàn)?/span>,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)排球隊(duì)在采用勝制排球決賽中相遇,已知每局比賽中甲獲勝的概率是.

1)求比賽進(jìn)行了局就結(jié)束的概率;

2)若第局甲勝,兩隊(duì)又繼續(xù)進(jìn)行了局結(jié)束比賽,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案