5.兩個變量y與x的回歸模型中,分別選擇了4個不同模型,它們的相關(guān)指數(shù)R如下,其中擬合效果最好的模型是(  )
A.模型1的相關(guān)指數(shù) R=0.21B.模型2的相關(guān)指數(shù)R=0.80
C.模型1的相關(guān)指數(shù)R=0.50D.模型1的相關(guān)指數(shù)R=0.98

分析 根據(jù)兩個變量y與x的回歸模型中,相關(guān)指數(shù)R的絕對值越接近1,其擬合效果越好,由此得出正確的答案.

解答 解:根據(jù)兩個變量y與x的回歸模型中,相關(guān)指數(shù)R的絕對值越接近1,其擬合效果越好,
選項D中相關(guān)指數(shù)R最接近1,其模擬效果最好.
故選:D.

點評 本題考查了用相關(guān)指數(shù)R描述兩個變量之間的回歸模型的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知:矩形A1ABB1,且AB=2AA1,C1,C分別是A1B1、AB的中點,D為C1C中點,將矩形A1ABB1沿著直線C1C折成一個60°的二面角,如圖所示.

(Ⅰ)求證:AB1⊥A1D;
(Ⅱ)求AB1與平面A1B1D所成角的正弦值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}\right.$(參數(shù)t∈R),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(參數(shù)θ∈[0,2π)),則圓C的圓心坐標(biāo)為(0,2),圓心到直線l的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知矩形ABCD的頂點都在半徑為R的球O的球面上,且AB=6,BC=2$\sqrt{3}$,棱錐O-ABCD的體積為8$\sqrt{3}$,則R=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(x2-3x+3)ex,其中e是自然對數(shù)的底數(shù).
(1)若x∈[-2,a],-2<a<1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)a>-2,求證:f(a)>$\frac{13}{e^2}$;
(3)設(shè)h(x)=f(x)+(x-2)ex,x∈(1,+∞),是否存區(qū)間[m,n]⊆(1,+∞),使得x∈[m,n]時,y=h(x)的值域也是[m,n]?若存在,請求出一個這樣的區(qū)間; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=x2e2x的導(dǎo)數(shù)是( 。
A.y=(2x2+x2)exB.y=2xe2x+x2exC.y=2xe2x+x2e2xD.y=(2x+2x2)e2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列命題正確的序號是①②③
①命題“若a>b,則2a>2b”的否命題是真命題;
②命題“a、b都是偶數(shù),則a+b是偶數(shù)”的逆否命題是真命題;
③若p是q的充分不必要條件,則¬p是¬q的必要不充分條件;
④方程ax2+x+a=0有唯一解的充要條件是a=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求滿足下列條件的直線方程
(1)過點P(-1,3)且平行于直線x-2y+3=0
(2)點A(1,2),B(3,1),則線段AB的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.?dāng)S一枚骰子,出現(xiàn)的點數(shù)X是一隨機變量,則P(X>5)的值為$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊答案