12.函數(shù)y=f(x)圖象上不同兩點A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定φ(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$叫做曲線y=f(x)在點A與點B之間的“彎曲度”,給出以下命題:
①函數(shù)y=x3-x2+1圖象上兩點A與B的橫坐標(biāo)分別為1,2,則ϕ(A,B)>$\sqrt{2}$
②存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);
③設(shè)點A、B是拋物線y=x2+1上不同的兩點,則φ(A,B)≤2;
④設(shè)曲線y=ex上不同兩點A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<1恒成立,則實數(shù)t的取值范圍是(-∞,1).
以上正確命題的序號為①②③.

分析 由新定義,利用導(dǎo)數(shù)逐一求出函數(shù)y=x3-x2+1、y=x2+1在點A與點B之間的“彎曲度”判斷①、③;舉例說明②正確;求出曲線y=ex上不同兩點A(x1,y1),B(x2,y2)之間的“彎曲度”,然后結(jié)合t•φ(A,B)<1得不等式,舉反例說明④錯誤.

解答 解:對于①,由y=x3-x2+1,得y′=3x2-2x,
則kA=y′|x=1=1,kB=y′|x=2=8,
y1=1,y2=5,則|AB|=$\sqrt{(2-1)^{2}+(5-1)^{2}}$=$\sqrt{17}$,φ(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$=$\frac{7}{\sqrt{17}}$>$\sqrt{2}$正確;
對于②,常數(shù)函數(shù)y=1滿足圖象上任意兩點之間的“彎曲度”為常數(shù),正確;
對于③,設(shè)A(x1,y1),B(x2,y2),y′=2x,
則kA-kB=2x1-2x2,|AB|=|x1-x2|$\sqrt{1+({x}_{1}+{x}_{2})^{2}}$.
∴φ(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$=$\frac{2}{\sqrt{1+({x}_{1}+{x}_{2})^{2}}}$$≤\frac{2}{1}$=2,正確;
對于④,由y=ex,得y′=ex,φ(A,B)=$\frac{|{e}^{{x}_{1}}-{e}^{{x}_{2}}|}{\sqrt{1+({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}}$.
t•φ(A,B)<1恒成立,即t|${e}^{{x}_{1}}-{e}^{{x}_{2}}$|<$\sqrt{1+({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}$恒成立,t=1時該式成立,∴錯誤.
故答案為:①②③.

點評 本題是新定義題,考查了命題的真假判斷與應(yīng)用,考查了利用導(dǎo)數(shù)研究過曲線上某點的切線方程,考查了函數(shù)恒成立問題,關(guān)鍵是對題意的理解,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3),則這個數(shù)列的通項公式為an=$\frac{7•{3}^{n-1}+13•(-1)^{n-1}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某大學(xué)的一個社會實踐調(diào)查小組,在對大學(xué)生的良好“光盤習(xí)慣”的調(diào)査中,隨機發(fā)放了l20份問巻.對收回的l00份有效問卷進行統(tǒng)計,得到如下2x2列聯(lián)表:
做不到光盤能做到光盤合計
451055
301545
合計7525100
(1)現(xiàn)已按是否能做到光盤分層從45份女生問卷中抽取了9份問卷,若從這9份問卷中隨機抽取4份,并記其中能做到光盤的問卷的份數(shù)為ξ,試求隨機變量ξ的分布列和數(shù)學(xué)期望
(2)如果認(rèn)為良好“光盤習(xí)慣”與性別有關(guān)犯錯誤的概率不超過P,那么根據(jù)臨界值表最精確的P的值應(yīng)為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d,
獨立性檢驗臨界表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)=ax2+bx+1(a、b∈R),若f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立,則a+b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,A,B,C的對邊分別為a,b,c,其中c邊最長,并且sin2A+sin2B=1.求證:△ABC為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若a+2,a+3,a+4是鈍角三角形的三邊長,則a的取值范圍是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某校高一、高二、高三年級的學(xué)生人數(shù)之比為3:4:3,現(xiàn)用分層抽樣的方法從該校高中三個年級的學(xué)生中抽取容量為50的樣本,則應(yīng)從高二年級抽取學(xué)生人數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:x2-y2=2的一個焦點為F,則點F到C的一條漸近線的距離為(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.圓x2+y2-4x-4y-10=0上到直線x+y=0的距離為$2\sqrt{2}$的點有2個.

查看答案和解析>>

同步練習(xí)冊答案