分析 由f(-1)=0,可得b=a+1,又對任意實(shí)數(shù)x均有f(x)≥0成立,可得$\left\{\begin{array}{l}a>0\\△=^{2}-4a≤0\end{array}\right.$恒成立,可求出a,b的值;
解答 解:∵函數(shù)f(x)=ax2+bx+1(a、b∈R),f(-1)=0,
∴a-b+1=0即b=a+1,
又對任意實(shí)數(shù)x均有f(x)≥0成立
∴$\left\{\begin{array}{l}a>0\\△=^{2}-4a≤0\end{array}\right.$恒成立,即(a+1)2-4a≤0,
可得(a-1)2≤0恒成立
∴a=1,b=2;
a+b=3.
故答案為:3.
點(diǎn)評 本題考查了函數(shù)的恒成立問題及二次函數(shù)的性質(zhì)的應(yīng)用,難度一般,關(guān)鍵是掌握二次函數(shù)的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 1.5 | C. | 2 | D. | 2.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com