15.如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2,點E是SD的中點,O是AC與BD的交點.
(1)求證:OE∥平面SBC;
(2)求點E到平面SBC的距離.

分析 (1)由線面平行的判定定理即可得到結(jié)論.
(2)過D做DF⊥SC,垂足為F,證明DF⊥平面SBC,求出DF,利用點E是SD的中點,求點E到平面SBC的距離.

解答 (1)證明:連接OE,則O是BD的中點,
∵E是SD的中點,
∴OE是△BDS的中位線,
∴OE∥SB,
∵OE?平面SBC,SB?平面SBC,
∴OE∥平面SBC;
(2)解:過D做DF⊥SC,垂足為F,
∵SD⊥平面ABCD,BC?平面ABCD,
∴SD⊥BC,
∵BC⊥CD,SD∩CD=D,
∴BC⊥平面SCD,
∴BC⊥DF,
∵SC∩BC=C,
∴DF⊥平面SBC,
∵SD=AD=2,
∴DF=$\sqrt{2}$,
∵點E是SD的中點,
∴點E到平面SBC的距離為$\frac{\sqrt{2}}{2}$.

點評 本題主要考查線面平行的判斷以及點E到平面SBC的距離,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知M=$(\begin{array}{l}{2}&{0}\\{0}&{2}\end{array})$,a=$(\begin{array}{l}{3}\\{1}\end{array})$試計算M10a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在三棱錐S-ABC中,△ABC為正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H-AB-C為30°,則$\frac{SA}{AB}$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx-mx.
(Ⅰ)若f(x)的最大值為-1,求實數(shù)m的值;
(Ⅱ)若f(x)的兩個零點為x1,x2,且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e為自然對數(shù)的底數(shù),f′(x)是f(x)的導(dǎo)函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-4t+a\\ y=3t-1\end{array}\right.$(t為參數(shù)),在直角坐標(biāo)系xOy中,以O(shè)點為極點,x軸的非負(fù)半軸為極軸,以相同的長度單位建立極坐標(biāo)系,設(shè)圓M的方程為ρ2-6ρsinθ=-8.
(Ⅰ)求圓M的直角坐標(biāo)方程;
(Ⅱ)若直線l截圓M所得弦長為$\sqrt{3}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.點(1,1,-1)到平面x-y+z+4=0的距離是( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若向量$\overrightarrow{n}$=(1,1,0)垂直于經(jīng)過點A(2,0,2)的動直線l,設(shè)d為點P(-4,0,2)到直線l的距離,則dmin:dmax等于( 。
A.1:2B.1:$\sqrt{2}$C.1:$\sqrt{3}$D.1:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求點P(3,-1,2)到直線$\left\{\begin{array}{l}{x+y-z+1=0}\\{2x-y+z-4=0}\end{array}\right.$的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求下列函數(shù)的定義域:
(1)y=lg(sinx);
(2)y=$\sqrt{1-2si{n}^{2}x}$;
(3)y=lg(2sinx-1)+$\sqrt{64-{x}^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案