3.已知在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,且a2+b2-c2-ab=0,若△ABC的面積為$\frac{\sqrt{3}}{2}$c,則ab的最小值為( 。
A.24B.12C.6D.4

分析 由題意和余弦定理可得C的值,進而由面積公式可得c和ab的關(guān)系,代入已知式子由基本不等式可得ab的不等式,解不等式可得.

解答 解:∵a2+b2-c2-ab=0,∴a2+b2-c2=ab,
∴由余弦定理可得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∵C∈(0,π),∴C=$\frac{π}{3}$,
∵△ABC的面積為$\frac{\sqrt{3}}{2}$c,∴$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{2}$c,
∴$\frac{1}{2}$ab•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$c,∴c=$\frac{1}{2}$ab,
代入已知式子可得a2+b2-$\frac{1}{4}$(ab)2-ab=0,
∴$\frac{1}{4}$(ab)2+ab=a2+b2≥2ab,
整理可得(ab)2-4ab≥0,
解關(guān)于ab的不等式可得ab≥4,或ab≤0(舍去)
當(dāng)且僅當(dāng)a=b=2時取到等號,
∴ab的最小值為4,
故選:D.

點評 本題考查解三角形,涉及余弦定理和三角形的面積公式以及基本不等式和不等式的解法,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等比數(shù)列{an}的前n項和為Sn,公比為q,若a3=2S2+1,a4=2S3+1,則q等于( 。
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.書架上有語文、數(shù)學(xué)、英語書若干本,它們的數(shù)量比依次是2:4:5,現(xiàn)用分層抽樣的方法從書架上抽取一個樣本,若抽出的語文書為10本,則應(yīng)抽出的英語書25本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平面直角坐標(biāo)系中,角α的頂點與原點重合,始邊與x軸的非負半軸重合,終邊過點P(-$\sqrt{3}$,-1),則sin(2α-$\frac{π}{2}$)=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若數(shù)列{an}的前n項之和為Sn=3+2n,則a12+a22+a32+…+an2=$\frac{{4}^{n}+71}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}中,a1=a(實數(shù)a為常數(shù)),a2=2,Sn是其前n項和,且Sn=$\frac{n({a}_{n}-{a}_{1})}{2}$.?dāng)?shù)列{bn}是等比數(shù)列,b1=2,a4恰為S4與b2-1的等比中項.
(Ⅰ)證明:數(shù)列{an}是等差數(shù)列;
(Ⅱ)求數(shù)列{bn}的通項公式;
(Ⅲ)若c1=$\frac{3}{2}$,當(dāng)n≥2時cn=$\frac{1}{_{n-1}+1}$+$\frac{1}{_{n-1}+2}$+…+$\frac{1}{_{n}}$,{cn}的前n項和為Tn,求證:對任意n≥2,都有12Tn≥6n+13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知sinα=$\frac{\sqrt{2}}{3}$,α∈(0,$\frac{π}{2}$),則cos(π-α)=$-\frac{\sqrt{7}}{3}$,cos2α=$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓C:x2+y2-2ax+4ay+5a2-25=0的圓心在直線l1:x+y+2=0上,則a=2;圓C被直線l2:3x+4y-5=0截得的弦長為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{lnx+a}{{e}^{x}}$(a∈R,e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線與x軸平行,求a的值;
(Ⅱ)設(shè)g(x)=(x3+2x2+2x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù),證明:對任意x>0,g(x)<2+$\frac{2}{{e}^{a+1}}$.

查看答案和解析>>

同步練習(xí)冊答案