20.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(4,3),$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,且$\overrightarrow{a}$⊥$\overrightarrow{c}$,|$\overrightarrow{c}$|=1,求實(shí)數(shù)x和y的值.

分析 根據(jù)向量的坐標(biāo)運(yùn)算得到$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$=(3x+4y,4x+3y),根據(jù)向量模的計(jì)算,向量垂直得到關(guān)于x,y的方程組,解得即可.

解答 解:∵$\overrightarrow{a}$=(3,4),$\overrightarrow$=(4,3),
∴$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$=(3x+4y,4x+3y),
∵$\overrightarrow{a}$⊥$\overrightarrow{c}$,
∴$\overrightarrow{a}$•$\overrightarrow{c}$=3(3x+4y)+4(4x+3y),即3x+4y=-$\frac{4}{3}$(4x+3y)①
∵|$\overrightarrow{c}$|=1,
∴(3x+4y)2+(4x+3y)2=1,②,
由①②得,
$\left\{\begin{array}{l}{3x+4y=\frac{4}{5}}\\{4x+3y=-\frac{3}{5}}\end{array}\right.$,或$\left\{\begin{array}{l}{3x+4y=-\frac{4}{5}}\\{4x+3y=\frac{3}{5}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=-\frac{24}{35}}\\{y=\frac{5}{7}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-\frac{24}{35}}\\{y=-\frac{5}{7}}\end{array}\right.$.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算和向量的數(shù)量積的運(yùn)算以及方程組的解法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|x2-x-2>0},B={x|2x2+(2k+5)x+5k<0}.
(1)若k<0時(shí),求B;
(2)若A∩B中有且僅有一個(gè)整數(shù)-2,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)p:x<1,q:-1<x<1,則p是q成立的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線(  )對(duì)稱.
A.x=-1B.x=1C.$x=\frac{1}{2}$D.$x=-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R都有f(x+4)=f(x)+2f(2),且f(0)=3,則f(-8)的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)若x∈[0,2π].求函數(shù)y=$\sqrt{\frac{\sqrt{3}}{2}-sinx}$的定義域;
(2)求函數(shù)y=$\sqrt{2-|x-4|}$+lg(-sinx)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知過原點(diǎn)斜率為±2兩條直線與函數(shù)y=x3+x在點(diǎn)A(1,2)處的切線圍成的封閉圖形的區(qū)域?yàn)镻,那么封閉區(qū)域內(nèi)任意一點(diǎn)為B(x,y).則$\stackrel{→}{OA}•\stackrel{→}{OB}$的最大值( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}和{bn}都是公差為1的等差數(shù)列,其首項(xiàng)分別為a1,b1,且若a1+b1=6,a1>b1,a1∈N+,b1∈N+,則數(shù)列${a_{b_1}},{a_{b_2}},…,{a_{b_n}},…$的前10項(xiàng)的和等于95.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)記函數(shù)φ(x)=ax2-2x+1+ln(x+1)的圖象為C,l為曲線C在點(diǎn)P(0,1)的切線,若存在a≥$\frac{1}{2}$,使直線l與曲線C有且僅有一個(gè)公共點(diǎn),求滿足條件的所有a的值;
(2)判斷xsinx=1(x∈(0,5))實(shí)根的個(gè)數(shù);
(3)完成填空
用方程表述用函數(shù)零點(diǎn)表述
若函數(shù)y=f(x)和y=g(x)的圖象在(a,b)內(nèi)有交點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案