7.已知$\overrightarrow a$,$\overrightarrow b$為非零向量,且|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$|+|$\overrightarrow b$|,則一定有( 。
A.$\overrightarrow a$=$\overrightarrow b$B.$\overrightarrow a$∥$\overrightarrow b$,且$\overrightarrow a$,$\overrightarrow b$方向相同
C.$\overrightarrow a$=-$\overrightarrow b$D.$\overrightarrow a$∥$\overrightarrow b$,且$\overrightarrow a$,$\overrightarrow b$方向相反

分析 根據(jù)向量數(shù)量積的應(yīng)用,利用平方法進(jìn)行判斷即可.

解答 解:∵$\overrightarrow a$,$\overrightarrow b$為非零向量,且|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$|+|$\overrightarrow b$|,
∴平方得|$\overrightarrow a$|2+|$\overrightarrow b$|2+2$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$|2+|$\overrightarrow b$|2+2|$\overrightarrow a$|•|$\overrightarrow b$|,
即$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$|•|$\overrightarrow b$|,
∴|$\overrightarrow a$|•|$\overrightarrow b$|cos<$\overrightarrow a$,$\overrightarrow b$>=|$\overrightarrow a$|•|$\overrightarrow b$|,
則cos<$\overrightarrow a$,$\overrightarrow b$>=1,即$\overrightarrow a$∥$\overrightarrow b$,且$\overrightarrow a$,$\overrightarrow b$方向相同,
故選:B

點(diǎn)評 本題主要考查向量數(shù)量積的應(yīng)用,利用平方法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知x,y滿足約束條件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-4≤0}\\{2x-y+2≥0}\end{array}\right.$,則z=2x+y的最大值為$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,導(dǎo)數(shù)是$\frac{1}{x}$的函數(shù)是( 。
A.lnkxB.ln(x+k)C.ln$\frac{k}{x}$D.ln$\frac{x+k}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}的通項公式為an=-n+p,數(shù)列{bn}的通項公式為bn=2n-5,設(shè)cn=$\left\{\begin{array}{l}{a_n},{a_n}≤{b_n}\\{b_n},{a_n}>{b_n}\end{array}$,若在數(shù)列{cn}中,c8>cn(n∈N*,n≠8),則實(shí)數(shù)p的取值范圍是(  )
A.(7,8)B.(8,9)C.(9,11)D.(12,17)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等比數(shù)列{an}的公比為2,則$\frac{{a}_{4}}{{a}_{2}}$值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=f(x)+g(x)-2在區(qū)間(0,+∞)上有最大值是6,那么h(x)在(-∞,0)上的最小值是( 。
A.-7B.-8C.-9D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)圖象的一部分如圖所示,其解析式為y=sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足an+1+an=4n-3,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求a1的值;
(2)當(dāng)a1=-3時,求數(shù)列{an}的前n項和Sn;
(3)若對任意的n∈N*,都有$\frac{{{a}_{n}}^{2}+{{a}_{n+1}}^{2}}{{a}_{n}+{a}_{n+1}}$≥5成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x2-1)的定義域為[-$\sqrt{3}$,$\sqrt{3}$],求f(x-1)的定義域.

查看答案和解析>>

同步練習(xí)冊答案