15.已知F1、F2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左、右焦點,過F1且垂直于x軸的直線與橢圓交于M,N兩點,若△MNF2為等腰直角三角形,則橢圓的離心率e為$\sqrt{2}$-1.

分析 把x=-c代入橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1方程,解得y=±$\frac{^{2}}{a}$.由于△MNF2為等腰直角三角形,可得$\frac{^{2}}{a}$=2c,化簡整理即可得出.

解答 解:把x=-c代入橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1方程,解得y=±$\frac{^{2}}{a}$,
∵△MNF2為等腰直角三角形,
∴$\frac{^{2}}{a}$=2c,即a2-c2=2ac,
化為e2+2e-1=0,0<e<1.
解得e=$\sqrt{2}$-1.
故答案為:$\sqrt{2}$-1.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、等腰直角三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.不等式|x|(a-x)≥9在x∈[2,+∞)總有解,則a的范圍是[6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+cos(ωx+$\frac{π}{4}$)sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期為24π,則f(π)=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過點P(1,2)作圓(x+1)2+(y+1)2=1的兩條切線,切點分別為A,B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$=( 。
A.$\frac{121}{12}$B.$\frac{125}{12}$C.$\frac{131}{13}$D.$\frac{132}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若sin(π+α)+cos($\frac{π}{2}$+α)=-m,則cos($\frac{3}{2}π$-α)+2sin(2π-α)的值為( 。
A.-$\frac{2m}{3}$B.$\frac{2m}{3}$C.-$\frac{3m}{2}$D.$\frac{3m}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在四棱錐P-ABCD中,BP=BC,AB⊥平面PBC,AB∥CD,AB=$\frac{1}{2}$DC,E為PD中點,求證:AE⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知Sn是各項均為正數(shù)的數(shù)列{an}的前n項和,且對于任意n∈N*,均有2Sn=a2n+an成立.?dāng)?shù)列(bn}滿足an=log2bn
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的通項公式;
(3)記dn=5an-bn,若已知存在正整數(shù)M,使得對一切n∈N*,dn≤M恒成立,請猜測M的最小值,并通過研究數(shù)列{dn}的單調(diào)性證明你的猜測.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,三棱錐V-ABC的底面ABC為正三角形,側(cè)面VAC與底面ABC垂直,且VA=VC,以平面VAC為正視圖的投影面,其正視圖的面積為$\frac{2}{3}$,則其側(cè)視圖的面積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的焦點為F1、F2,點P為這個橢圓上的動點,當(dāng)∠F1PF2為鈍角時,點P橫坐標(biāo)的取值范圍是(-$\frac{4\sqrt{6}}{3}$,$\frac{4\sqrt{6}}{3}$).

查看答案和解析>>

同步練習(xí)冊答案