15.求函數(shù)$\sqrt{2sinx+1}$+$\frac{1}{\sqrt{\sqrt{3}-2sinx}}$的定義域.

分析 利用開(kāi)偶次方被開(kāi)方數(shù)非負(fù),分母不為0,列出不等式組,求解即可.

解答 解:函數(shù)$\sqrt{2sinx+1}$+$\frac{1}{\sqrt{\sqrt{3}-2sinx}}$有意義,可得:$\left\{\begin{array}{l}2sinx+1≥0\\ \sqrt{3}-2sinx>0\end{array}\right.$,
可得-$\frac{1}{2}≤sinx<\frac{\sqrt{3}}{2}$,解得x∈[2k$π-\frac{π}{6}$,2k$π+\frac{π}{3}$)∪(2k$π+\frac{2π}{3}$,2k$π+\frac{7π}{6}$],k∈Z.
函數(shù)的定義域?yàn)椋篬2k$π-\frac{π}{6}$,2k$π+\frac{π}{3}$)∪(2k$π+\frac{2π}{3}$,2k$π+\frac{7π}{6}$],k∈Z.

點(diǎn)評(píng) 本題考查函數(shù)的定義域的求法,三角不等式的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知an=logn+1(n+2)(n∈N*),觀察下列運(yùn)算a1•a2=log23•log34=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$=2,a1•a2•a3•a4•a5•a6=log23•log34•…•log67•log78=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$•…•$\frac{lg7}{lg6}$•$\frac{lg8}{lg7}$=3.定義使a1•a2•a3•…•ak為整數(shù)的k(k∈N*)叫做企盼數(shù).則區(qū)間[1,2016]內(nèi)的所有企盼數(shù)的和為 ( 。
A.2026B.2057C.2073D.2074

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x+$\frac{a}{x}$,g(x)=a-2x
(1)若a=4,判斷函數(shù)y=f(x)在[2,+∞)上的單調(diào)性,并證明你得結(jié)論;
(2)若不等式f(x)≥g(x)在[1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列說(shuō)法:
①兩數(shù)之和一定大于每一個(gè)加數(shù);②兩數(shù)之和一定小于每一個(gè)加數(shù);③兩數(shù)之和一定大于兩數(shù)絕對(duì)值之和;④兩數(shù)之和一定小于兩數(shù)絕對(duì)值之和.
其中錯(cuò)誤的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合M={2,0,b},N={2,0,b2},其中M=N,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.函數(shù)y=sin(-3x+$\frac{π}{4}$),x∈R在什么區(qū)間上是增函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)y=loga(x2-ax)在區(qū)間[2,3]上是增函數(shù),則實(shí)數(shù)a的取值范圍是a∈(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)正四棱臺(tái)ABCD-A′B′C′D′中的上、下底面邊長(zhǎng)分別為2和4,側(cè)棱長(zhǎng)度為2,求這個(gè)棱臺(tái)的高和斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某商場(chǎng)出售一種商品,每天可賣1 000件,每件可獲利4元.據(jù)經(jīng)驗(yàn),若這種商品每件每降價(jià)0.1元,則比降價(jià)前每天可多賣出100件,為獲得最好的經(jīng)濟(jì)效益每件單價(jià)應(yīng)降低多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案