5.已知函數(shù)f(x)=$\frac{1}{2}$x2-3x+alnx+4(a>0)
(1)若f(x)在其定義域是單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(2)當(dāng)a=2時,函數(shù)y=f(x)在[en,+∞)(n∈Z)有零點,求n的最大值.

分析 (1)利用函數(shù)單調(diào),其導(dǎo)函數(shù)大于等于0或小于等于0恒成立;二次不等式恒成立,即a≤0,又a≠0,從而得出實數(shù)a的取值范圍.
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)性,取特殊值,求出n的最大值即可.

解答 解:(1)f′(x)=x-3+$\frac{a}{x}$,
若函數(shù)f(x)是定義域(0,+∞)上的單調(diào)函數(shù),則只能f′(x)≥0在(0,+∞)上恒成立,
即x-3+$\frac{a}{x}$≥0在(0,+∞)上恒成立,
即只要a≥3x-x2在(0,+∞)上恒成立,
∴實數(shù)a的取值范圍[$\frac{9}{4}$,+∞).
(2)a=2時,f(x)=$\frac{1}{2}$x2-3x+2lnx+4,
f′(x)=$\frac{{x}^{2}-3x+2}{x}$,
令f′(x)>0,解得:0<x<1或x>2,
令f′(x)<0,解得:1<x<2,
∴f(x)在(0,1)遞增,在(1,2)遞減,在(2,+∞)遞增,
∴f(x)極大值=f(1)=$\frac{3}{2}$>0,f(x)極小值=f(2)=2ln2>0,
故n∈N時,f(x)在[en,+∞)內(nèi)不存在零點,
當(dāng)n=-1時,f(e-1)=$\frac{2e-3}{e}$+$\frac{1}{2{e}^{2}}$>0,
n=-2時,f(e-2)=$\frac{1-6{e}^{2}}{2{e}^{4}}$<0,
故在[e-2,e-1]內(nèi)存在一零點,
故函數(shù)f(x)在[en,+∞),(n∈Z)有零點時,n的最大值是-2.

點評 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及利用導(dǎo)數(shù)研究函數(shù)的零點,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)$f(x)=\frac{(4x+a)lnx}{3x+1}$,曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若對于任意的x∈[1,e],f(x)≤mx恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.?dāng)?shù)列{an}中,a1=2,an+1=an+c•2n(c是常數(shù),n=1,2,3…),且a1,a2,a3成公比不為1的等比數(shù)列.
(Ⅰ)求c的值;
(Ⅱ)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}滿足,a1=0,數(shù)列{bn}為等差數(shù)列,且an+1=an+bn,b15+b16=15,則a31=225.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,且經(jīng)過點(1,$\frac{3}{2}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓的短軸兩端點分別為A,B,過橢圓C外一點T(0,m)是否存在一條直線l交橢圓C于P,Q兩點,使得$\overrightarrow{TP}$•$\overrightarrow{TQ}$=$\frac{7}{6}$$\overrightarrow{TA}$•$\overrightarrow{TB}$?若存在,請求出此直線;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30名女20名),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況如表:(單位:人)
幾何題代數(shù)題總計
男同學(xué)22830
女同學(xué)81220
總計302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,女生甲每次解答一道幾何題所用的時間在5-7分鐘,女生乙每次解答一道幾何題所用的時間在6-8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進(jìn)行全程研究,記甲、乙兩名女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C經(jīng)過兩個點A(2,-3)和B(-2,-5),且圓心在直線x-2y-3=0上.
(1)求此圓C的方程;
(2)直線l:x+my+m+2=0(m為常數(shù))與圓C相交于M,N,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)$x={({{{log}_{\frac{1}{2}}}\frac{1}{3}})^{-2}}+{({{{log}_{\frac{1}{3}}}\frac{1}{3}})^{-1}}$,則x屬于區(qū)間( 。
A.(-2,-1)B.(1,2)C.(-3,-2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知實數(shù)數(shù)列{an}滿足:a1=3,an=$\frac{n+2}{3n}$(an-1+2),n≥2,證明:當(dāng)n≥2時,{an}是單調(diào)減數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案