19.已知函數(shù)$f(x)=\frac{1}{2}cos(ω\;x+\frac{π}{3})$,且f(x+3)-f(x)=0,則ω為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.$\frac{3π}{2}$

分析 由題意可得函數(shù)的周期為3=$\frac{2π}{ω}$,由此求得ω的值.

解答 解:由函數(shù)$f(x)=\frac{1}{2}cos(ω\;x+\frac{π}{3})$,且f(x+3)-f(x)=0,可得函數(shù)的周期為3=$\frac{2π}{ω}$,
求得ω=$\frac{2π}{3}$,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)的周期性的定義,余弦函數(shù)的周期性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.電影放映機(jī)上聚光燈泡的反射面,是由橢圓的一部分CAB(如圖),繞著OA軸旋轉(zhuǎn)而成的,如果把燈泡放在橢圓的一個(gè)焦點(diǎn)F1處,那么根據(jù)橢圓的光學(xué)性質(zhì),由F1發(fā)出光線,經(jīng)反射面反射后,都集中在橢圓的另一個(gè)焦點(diǎn)F2處,因此,只要把影片放在F2處,就可以得到最強(qiáng)的光線,現(xiàn)已知|F1A|=1.5cm,|BC|=5.2cm,那么聚光燈泡F1與影片門(mén)F2之間應(yīng)該距離多少cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知直線l:mx-y=1,若直線l與直線x-(m+1)y=1垂直,則m的值為-$\frac{1}{2}$; 求直線l被圓C:x2+y2-2y-8=0截得的弦長(zhǎng)最短時(shí)m的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,c-b=6,c+b-a=2,且O為此三角形的內(nèi)心,則$\overrightarrow{AO}$•$\overrightarrow{CB}$=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.化簡(jiǎn):
(1)$a•\sqrt{\root{3}{a^4}•{a^3}•\root{3}{{{a^{-7}}}}}÷\root{3}{{\sqrt{{a^{-3}}}•{a^2}•\sqrt{a^5}}}$
(2)$\sqrt{\frac{9}{4}}-{(\frac{8}{27})^{-\frac{2}{3}}}+(lg5{)^2}+2lg2-{(lg2)^2}+({log_4}81)•({log_{27}}64)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.判斷直線ρcos(θ-$\frac{π}{3}$)=$\frac{1}{2}$與圓ρ=4cosθ的位置關(guān)系,如果相交,求出直線被圓截得的線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直線y=kx+1與圓x2+y2=1的位置關(guān)系是( 。
A.相交B.相切C.相交或相切D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,梯形ABCD,AB∥CD,△ABC為等邊三角形,AB=1,CD=2,點(diǎn)E,F(xiàn)分別為AB,AD的中點(diǎn),將△ABC沿AC折起到AB′C位置,使得CE⊥AD.
(1)求三棱錐B′-ADC的體積;
(2)若P在線段CD上,滿足CE∥平面B′PF,求$\frac{CP}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知x,y,z∈R+,求證:$\frac{x}{2x+y+z}$+$\frac{y}{x+2y+z}$+$\frac{z}{x+y+2z}$≤$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案