11.直線y=kx+1與圓x2+y2=1的位置關(guān)系是(  )
A.相交B.相切C.相交或相切D.不能確定

分析 求出直線系經(jīng)過(guò)的定點(diǎn),判斷定點(diǎn)與圓的位置關(guān)系即可.

解答 解:直線y=kx+1恒過(guò)(0,1),因?yàn)椋?,1)在圓x2+y2=1上,所以直線y=kx+1與圓x2+y2=1的位置關(guān)系是:相交或相切.
故選:C.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),作直線l交橢圓于P,Q兩點(diǎn).M為線段PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)直線1的斜率為k1,直線OM的斜率為k2,k1k2=-$\frac{2}{3}$.
(I)求橢圓C的離心率;
(Ⅱ)設(shè)直線l與x軸交于點(diǎn)D(-5,0),且滿足$\overrightarrow{DP}$=2$\overrightarrow{QD}$,當(dāng)△0PQ的面積最大時(shí),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知全集U={0,1,2,3,4,5,6},集合A={x∈Z|x2-5x+6≤0},集合B={1,3,4,6},則集合A∩(∁UB)=(  )
A.{0}B.{2}C.{0,1,2,4,6}D.{0,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)$f(x)=\frac{1}{2}cos(ω\;x+\frac{π}{3})$,且f(x+3)-f(x)=0,則ω為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)數(shù)列an=min{k+$\frac{n}{4k}$|k∈N*),定義“優(yōu)數(shù)列”:△an=an-[an](n=1,2,…),其中[x]表示不超過(guò)x的最大整數(shù).(1)求a1,a2,a3,a4的值;
(2)探究數(shù)列{an}的單調(diào)性;
(3)探究?jī)?yōu)數(shù)列:△a1,△a2,…,△a2015中等于0的項(xiàng)的個(gè)數(shù);
(4)設(shè)Sn=△a1+△a2+…+△an為優(yōu)數(shù)列的前n項(xiàng)和,試求S2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}中,a1=1,an=an-1+$\frac{1}{2}$(n≥2),則數(shù)列{an}的前9項(xiàng)和等于( 。
A.27B.25C.23D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,長(zhǎng)方體ABCD-A′B′C′D′中,AD=2AB=2AA′=2.
(1)求證:A′B⊥平面ADC′;
(2)求二面角D′-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{2x+b}{{1+{x^2}}}$是定義在(m,1)上的奇函數(shù)(a,b,m為常數(shù)).
(1)確定函數(shù)f(x)的解析式及定義域;
(2)判斷并利用定義證明f(x)在(m,1)上的單調(diào)性;
(3)若對(duì)任意t∈[-2,2],是否存在實(shí)數(shù)x使f(tx-2)+f(x)<0恒成立?若存在,則求出實(shí)數(shù)x的取值范圍,若不存在則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)直線l:ρcosθ+$\sqrt{3}$ρsinθ=2$\sqrt{2}$與圓C:ρ=2交于A、B兩點(diǎn).
(Ⅰ)求A、B兩點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)P是圓C上的動(dòng)點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案