在平面直角坐標(biāo)系中,已知圓 的圓心為,過點且斜率為的直線與圓相交于不同的兩點
(Ⅰ)求的取值范圍;
(Ⅱ)以O(shè)A,OB為鄰邊作平行四邊形OADB,是否存在常數(shù),使得直線OD與PQ平行?如果存在,求值;如果不存在,請說明理由.

(Ⅰ)先設(shè)出直線的方程,由直線與圓有兩個不同的交戰(zhàn),故聯(lián)立圓方程可得得一元二次方程,由判別式大于0可得K的取值范圍為;(Ⅱ)沒有符合題意的常數(shù),理由見解析.

解析試題分析:(Ⅰ);(Ⅱ)由向量加減法,可利用向量處理,設(shè),則,由共線等價于,然后由根與系數(shù)關(guān)系可得,由(Ⅰ)知,故沒有符合題意的常數(shù).注意運用向量法和方程的思想.
試題解析:(Ⅰ)圓的方程可寫成,所以圓心為,
且斜率為的直線方程為
代入圓方程得,整理得.   ①
直線與圓交于兩個不同的點等價于,
解得,即的取值范圍為
(Ⅱ)設(shè),則,
由方程①,   、
.  ③

所以共線等價于,
將②③代入上式,解得 
由(Ⅰ)知,故沒有符合題意的常數(shù)
考點:1.直線與圓的位置關(guān)系;2.一元二次方程的根的判別式;3.向量共線的充要條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓:和圓:

(1)若直線l過點A(4,0),且被圓C1截得的弦長為2,求直線l的方程;
(2)設(shè)P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線,它們分別與圓和圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知以點 為圓心的圓與直線 相切,過點的動直線 與圓 相交于兩點,的中點,直線相交于點 .

(1)求圓的方程;
(2)當(dāng)時,求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點且為
求:的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在點,點,求;
(1)過點的圓的切線方程;
(2)點是坐標(biāo)原點,連結(jié),,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點且為時,求:的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為,圓心在上.

(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓內(nèi)一點過點的直線交圓 兩點,且滿足 (為參數(shù)).
(1)若,求直線的方程;
(2)若求直線的方程;
(3)求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
己知圓C: (x – 2 )+ y 2 =" 9," 直線l:x + y = 0.
(1) 求與圓C相切, 且與直線l平行的直線m的方程;
(2) 若直線n與圓C有公共點,且與直線l垂直,求直線n在y軸上的截距b的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案