6.求函數(shù)f(x)=2x3-3x2-12x+5在區(qū)間[-2,3]上的最值.

分析 先求出函數(shù)f(x)的導(dǎo)數(shù),求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值.

解答 解:f′(x)=6x2-6x-12,
令f′(x)=0,則6x2-6x-12=0,
即x2-x-2=0,解得x1=-1,x2=2.
列表如下:

x-2(-2,-1)-1(-1,2)2(2,3)3
f′(x)+-+
f(x)1遞增12遞減-15遞增-4
∴函數(shù)f(x)=2x3-3x2-12x+5在x∈[-2,3]上的最大值為12,最小值為-15.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若$\overrightarrow a=(2x,1,3),\overrightarrow b=(1,-2y,9)$,若$\overrightarrow a$∥$\overrightarrow b$,則( 。
A.x=1,y=1B.$x=\frac{1}{2},y=-\frac{1}{2}$C.$x=\frac{1}{6},y=-\frac{3}{2}$D.$x=-\frac{1}{6},y=\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.計算:C${\;}_{4}^{3}$+C${\;}_{5}^{3}$+…+C${\;}_{10}^{3}$=329.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:
(1)$\frac{cos(-α)tan(7π+α)}{sin(π+α)}$
(2)$\frac{sin(π-α)sin(π+α)}{tan(2π-α)sin(2π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.${∫}_{-1}^{1}$x(x-1)的值為( 。
A.2B.$\frac{2}{3}$C.-$\frac{1}{3}$D.-$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=3x3-9x2+5在區(qū)間[-2,2]上的最大值是( 。
A.5B.2C.-7D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.把正整數(shù)數(shù)列的所有數(shù)按照從小到大的原則寫成如圖所示的數(shù)表,第k行有k個數(shù),第k行的第s個數(shù)(從左數(shù)起)記為A(k,s),則2015這個數(shù)可記為A(63,62).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,P是圓O外一點,PA,PB是圓O的兩條切線,切點分別為A,B,PA中點為M,過M作圓O的一條割線交圓O于C,D兩點,若PB=8,MC=2,則CD=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=sinx+cosx的單調(diào)增區(qū)間為$[-\frac{3}{4}π+2kπ,\frac{π}{4}+2kπ]k∈Z$;已知$cos(α+\frac{π}{12})=\frac{3}{5}$,且$α∈(0,\frac{π}{2})$,則$f(2α+\frac{π}{12})$=$\frac{{24\sqrt{6}-7\sqrt{2}}}{50}$.

查看答案和解析>>

同步練習(xí)冊答案