A. | (1,+∞) | B. | (1,2] | C. | (1,$\sqrt{3}$] | D. | (1,3] |
分析 首先利用雙曲線的定義求出關(guān)系式,進(jìn)一步利用均值不等式建立關(guān)系式,$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=$\frac{(2a+m)^{2}}{m}$=$\frac{4{a}^{2}}{m}$+4a+m≥8a,最后求出結(jié)果.
解答 解:設(shè)|PF2|=m,(m≥c-a)
則:根據(jù)雙曲線的定義:|PF1|=2a+m,
所以$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=$\frac{(2a+m)^{2}}{m}$=$\frac{4{a}^{2}}{m}$+4a+m≥8a當(dāng)且僅當(dāng)m=2a時(shí)成立.
所以:c-a≤2a
即解得:1<e≤3
故選:D.
點(diǎn)評(píng) 本題考查的知識(shí)要點(diǎn):雙曲線的定義的應(yīng)用.雙曲線的離心率,均值不等式的應(yīng)用,屬于中等題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>0) | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<0) | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 | D. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b<a<c | B. | b<c<a | C. | c<b<a | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若x2-5x+6=0,則x=2”的逆命題是“若x≠2,則x2-5x+6≠0” | |
B. | 若命題p:存在x0∈R,x02+x0+1<0,則¬p:對(duì)任意x∈R,x2+x+1≥0 | |
C. | 若x,y∈R,則“x=y”是“xy≥${(\frac{x+y}{2})}^{2}$”的充要條件 | |
D. | 已知命題p和q,若“p或q”為假命題,則命題p與q中必一真一假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com