6.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=x(1-x),若數(shù)列{an}滿足a1=$\frac{1}{2}$,且an+1=$\frac{1}{{1-{a_n}}}$,則f(a2015)=(  )
A.6B.-6C.2D.-2

分析 由已知求出函數(shù)在x>0時的解析式,再由數(shù)列遞推式判斷數(shù)列周期性,求出a2015,代入函數(shù)解析式得答案.

解答 解:設(shè)x>0,則-x<0,
∵f(x)是定義在R上的奇函數(shù),
∴f(x)=-f(-x)=-[-x(1+x)]=x(1+x).
由a1=$\frac{1}{2}$,且an+1=$\frac{1}{1-{a}_{n}}$,
得${a}_{2}=\frac{1}{1-{a}_{1}}=\frac{1}{1-\frac{1}{2}}=2$,
${a}_{3}=\frac{1}{1-{a}_{2}}=\frac{1}{1-2}=-1$,
${a}_{4}=\frac{1}{1-{a}_{3}}=\frac{1}{1-(-1)}=\frac{1}{2}$.

∴數(shù)列{an}是以3為周期的周期數(shù)列,
則a2015=a671×3+2=a2=2.
∴f(a2015)=f(2)=2×(2+1)=6.
故選:A.

點評 本題考查了數(shù)列遞推式,考查了數(shù)列的周期性,訓練了函數(shù)解析式的求法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={x|x≥1},B={x|-2≤x≤2},則A∩B等于( 。
A.{x|1≤x≤2}B.{x|-2≤x≤1}C.{x|x≥-2}D.{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在銳角△ABC中,a、b、c分別為∠A、∠B、∠C所對的邊,且$\sqrt{3}$bcosC+$\sqrt{3}$ccosB=2csinA.
(1)試求∠C的大。
(2)若c=$\sqrt{3}$,求△ABC面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設(shè)全集U=R,集合A={x||x-1|<2},B={$\frac{1}{x}$≤1},則A∩B等于( 。
A.[1,3)B.(-1,3)C.(-1,0)∪[1,3)D.(-1,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)f(x)為R的函數(shù),且f(x)對?x,y∈R均有f(x+y)=f(x)+f(y),且當x<0時,f(x)>0.則不等式$f(\sqrt{x}-{log_2}x)>0$的解集為(0,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x>0}\\{-x+7,x<0}\end{array}\right.$,若f(m)=7,則m=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,(x∈R).
(1)當x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]時,求函數(shù)f(x)的值域.
(2)設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)由動點P向圓x2+y2=1引兩條切線PA,PB,切點分別為A,B,∠APB=60°,求動點P的軌跡方程
(2)已知圓x2+y2-x-8y+m=0與直線x+2y-6=0相交于P、Q兩點,定點R(1,1),若PR⊥QR,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.利用斜二測畫法畫邊長為3cm的正方形的直觀圖,正確的是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案