分析 觀察上述等式,得出等式右邊展開(kāi)式中各項(xiàng)系數(shù)具有對(duì)稱性,且第三項(xiàng)分別為:1,3,6,10,…,求出a2即得a2n-2的值.
解答 解:1+x+x2=1+x+x2
(1+x+x2)2=1+2x+3x2+2x3+x4
(1+x+x2)3=1+3x+6x2+7x3+6x4+3x5+x6
(1+x+x2)4=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8
觀察上述等式,知:
等式右邊展開(kāi)式中的第三項(xiàng)分別為:1,3,6,10,…,
即:1,1+2.1+2+3,1+2+3+4,…
根據(jù)已知可以推斷:
第n(n∈N*)個(gè)等式中a2為:
1+2+3+4+…+n=$\frac{n(n+1)}{2}$;
所以a2n-2=a2=$\frac{n(n+1)}{2}$.
故答案為:$\frac{n(n+1)}{2}$.
點(diǎn)評(píng) 本題考查了歸納推理的應(yīng)用問(wèn)題,其步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,0] | B. | {2} | C. | [0,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com