17.函數(shù)f(x)=$\frac{\sqrt{2}sin(x-\frac{π}{4})+2}{2si{n}^{2}\frac{x}{2}+1}$的最大值為M,最小值為m,則M+m等于( 。
A.1B.2C.3D.4

分析 運用兩角差的正弦公式和二倍角的余弦公式,化簡f(x)=1+$\frac{sinx}{2-cosx}$,設(shè)g(x)=$\frac{sinx}{2-cosx}$,定義域為R,判斷g(x)為奇函數(shù),運用奇函數(shù)的性質(zhì):最值之和為0,即可得到所求和.

解答 解:函數(shù)f(x)=$\frac{\sqrt{2}sin(x-\frac{π}{4})+2}{2si{n}^{2}\frac{x}{2}+1}$
=$\frac{\sqrt{2}(sinxcos\frac{π}{4}-cosxsin\frac{π}{4})+2}{1-cosx+1}$
=$\frac{sinx-cosx+2}{2-cosx}$=1+$\frac{sinx}{2-cosx}$,
設(shè)g(x)=$\frac{sinx}{2-cosx}$,定義域為R,
g(-x)=$\frac{sin(-x)}{2-cos(-x)}$=-$\frac{sinx}{2-cosx}$=-g(x),
可得g(x)為奇函數(shù).
設(shè)g(x)的最大值為A,則最小值為-A,
則f(x)的最大值M=A+1,最小值m=-A+1,
可得M+m=2.
故選:B.

點評 本題考查函數(shù)的最值的求法,注意運用三角函數(shù)的恒等變換,考查函數(shù)的奇偶性的判斷和運用,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(1+x+x22=1+2x+3x2+2x3+x4
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8
  …
觀察上述等式,由以上等式推測:對于n∈N﹡,若(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,則 a2n-2=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點P1(-2,3),P2(0,1),圓C是以P1P2的中點為圓心,$\frac{1}{2}$|P1P2|為半徑的圓.
(Ⅰ)若圓C的切線在x軸和y軸上截距相等,求切線方程;
(Ⅱ)若P(x,y)是圓C外一點,從P向圓C引切線PM,M為切點,O為坐標(biāo)原點,且有|PM|=|PO|,求使|PM|最小的點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某一簡單幾何體的三視圖如圖,則該幾何體的外接球的表面積為25π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓心為C的圓經(jīng)過點A(1,-5)和B(2,-2),且圓心C在直線l:x-y+1=0,求圓心為C的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.圓x2+y2+2x+y=0的半徑是( 。
A.$\frac{5}{4}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a+b=5,ab=3,求a2+b2及|a-b|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在等差數(shù)列{an}中,若a6=1,則a2+a10=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,角A,B,C所對的邊分別是a,b,c,若B=30°,b=2,則$\frac{a}{sinA}$的值是( 。
A.2B.3C.4D.6

查看答案和解析>>

同步練習(xí)冊答案