分析 可設(shè)$\overrightarrow{a}=(x,y)$,然后根據(jù)$\overrightarrow{a}•\overrightarrow=0$及$|\overrightarrow{a}|=2\sqrt{5}$即可建立關(guān)于x,y的方程組,解出x,y從而便可得出向量$\overrightarrow{a}$的坐標(biāo).
解答 解:設(shè)$\overrightarrow{a}=(x,y)$,根據(jù)條件:
$\left\{\begin{array}{l}{x+2y=0}\\{\sqrt{{x}^{2}+{y}^{2}}=2\sqrt{5}}\end{array}\right.$;
解得$\left\{\begin{array}{l}{x=4}\\{y=-2}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-4}\\{y=2}\end{array}\right.$;
∴$\overrightarrow{a}=(4,-2)$,或(-4,2).
故答案為:(4,-2)或(-4,2).
點(diǎn)評 考查向量坐標(biāo)的概念,以及向量數(shù)量積的坐標(biāo)運(yùn)算,根據(jù)向量的坐標(biāo)求向量長度的公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1 | B. | x2+$\frac{{y}^{2}}{5}$=1 | ||
C. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1或$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1 | D. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1或x2+$\frac{{y}^{2}}{5}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 70 | C. | 75 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | E,F(xiàn)樣本數(shù)據(jù)的眾數(shù)為84 | B. | E,F(xiàn)樣本數(shù)據(jù)的方差相同 | ||
C. | E,F(xiàn)樣本數(shù)據(jù)的平均數(shù)相同 | D. | E,F(xiàn)樣本數(shù)據(jù)的中位數(shù)相同 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com