11.若隨機(jī)變量η的分布列如下:
η-2-10123
P0.10.20.20.30.10.1
則當(dāng)P(η<x)=0.9時(shí),實(shí)數(shù)x的取值范圍是( 。
A.x≤3B.2≤x≤3C.2<x≤3D.2<x<3

分析 根據(jù)表格數(shù)據(jù)即可得出結(jié)論.

解答 解:由表格可知P(-2≤η≤2)=1-0.1=0.9,P(η=3)=0.1,
∵P(η<x)=0.9,
∴2<x≤3.
故選C.

點(diǎn)評(píng) 本題考查了離散型隨機(jī)變量的分布列,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知△ABC中,b=2,B=45°,C=105°,則a=( 。
A.$\sqrt{2}$B.$\sqrt{3}$+1C.$\sqrt{3}$-1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.學(xué)校藝術(shù)節(jié)對(duì)同一類的A,B,C,D四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品獲獎(jiǎng)情況預(yù)測(cè)如下:
甲說(shuō):“C或D 作品獲得一等獎(jiǎng)”
乙說(shuō):“A 作品獲得一等獎(jiǎng)”
丙說(shuō):“B,D 兩項(xiàng)作品未獲得一等獎(jiǎng)”
丁說(shuō):“C 作品獲得一等獎(jiǎng)”
若這四位同學(xué)中有且僅有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中若tanA=$\frac{1}{3}$,C=$\frac{5}{6}$π,BC=1,則AB=$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.?dāng)?shù)列{an}滿足a1=1,$\sqrt{{{a}_{n}}^{2}+2}$=an+1(n∈N+).
(1)求證:數(shù)列{an2}是等差數(shù)列,并求出{an}的通項(xiàng)公式;
(2)若bn=$\frac{2}{{a}_{n}+{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.一個(gè)袋子中有5個(gè)大小相同的球,其中3個(gè)白球與2個(gè)黑球,現(xiàn)從袋中任意取出一個(gè)球,取出后不放回,然后再?gòu)拇腥我馊〕鲆粋(gè)球,則第一次為白球、第二次為黑球的概率為$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)={sin^2}ωx-\sqrt{3}sinωxcosωx+\frac{1}{2}(ω>0)$,y=f(x)的圖象與直線y=2相交,且兩相鄰交點(diǎn)之間的距離為π.
(1)求f(x)的解析式,并求f(x)的單調(diào)增區(qū)間;
(2)已知函數(shù)$g(x)=mcos(x+\frac{π}{3})-m+2$,若對(duì)任意的x1,x2∈[0,π],均有f(x1)≥g(x2),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)=-x2+2ax在區(qū)間[1,2]上是減函數(shù),則a的取值范圍是( 。
A.a>1B.a≤1C.a<1D.a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在平行六面體ABCD-A'B'C'D'中,AB=4,AD=6,AA'=8,$∠BAD=\frac{π}{2}$,$∠DAA'=∠BAA'=\frac{π}{3}$,P是CC1的中點(diǎn).則AP=6$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案