19.某校在2015年對(duì)2000名高一新生進(jìn)行英語(yǔ)特長(zhǎng)測(cè)試選拔,現(xiàn)抽取部分學(xué)生的英語(yǔ)成績(jī),將所得數(shù)據(jù)整理后得出頻率分布直方圖如圖所示,圖中從左到右各小長(zhǎng)方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)求第二小組的頻率及抽取的學(xué)生人數(shù);
(2)學(xué)校打算從分?jǐn)?shù)在[130,140)和[140,150]分內(nèi)的學(xué)生中,按分層抽樣抽取4人進(jìn)行改進(jìn)意見(jiàn)問(wèn)卷調(diào)查,若調(diào)查老師隨機(jī)從這四人的問(wèn)卷中(每人一份)隨機(jī)抽取兩份調(diào)閱,求這兩份問(wèn)卷都來(lái)自英語(yǔ)測(cè)試成績(jī)?cè)赱130,140)分的學(xué)生概率.

分析 (1)根據(jù)直方圖中各小長(zhǎng)方形面積之比,利用頻率=$\frac{頻數(shù)}{樣本容量}$,計(jì)算頻率與樣本容量;
(2)利用列舉法得出對(duì)應(yīng)的基本事件數(shù),計(jì)算所求的概率.

解答 解:(1)根據(jù)直方圖中各小長(zhǎng)方形面積之比為2:4:17:15:9:3,得;
第二小組的頻率為 $\frac{4}{2+4+17+15+9+3}$=0.08,
∴抽取的學(xué)生人數(shù)為 $\frac{12}{0.08}$=150;
(2)根據(jù)題意,應(yīng)從分?jǐn)?shù)在[130,140]內(nèi)抽取學(xué)生為4×$\frac{9}{9+3}$=3人,記為a、b、c,
分?jǐn)?shù)在[140,150]內(nèi)抽取學(xué)生為1人,記為D;
則從這四個(gè)人的問(wèn)卷中隨機(jī)抽取兩份調(diào)閱,基本事件為ab、ac、aD、bc、bD、cD共6種,
這兩份問(wèn)卷都來(lái)自英語(yǔ)測(cè)試成績(jī)?cè)赱130,140]內(nèi)的是ab、ac、bc共3種,
∴所求的概率為P=$\frac{3}{6}$=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,也考查了用列舉法求古典概型的概率問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)a,b∈{1,2},則在不等式x+y-3≥0表示的平面區(qū)域內(nèi)的點(diǎn)P(a,b)共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若0<α<$\frac{π}{2}$,cos($\frac{π}{3}$+α)=$\frac{1}{3}$,則cosα(  )
A.$\frac{2\sqrt{2}+\sqrt{3}}{6}$B.$\frac{2\sqrt{6}-1}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{2}-\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在等差數(shù)列{an}中,若a2+a4+a5+a6+a8=25,則a2+a8=( 。
A.8B.10C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=nan-2n(n-1),等比數(shù)列{bn}的前n頂和為T(mén)n,公比為a1,且T5=T3+2b3
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-x},x<1}\\{{2}^{x-1}-a,x≥1}\end{array}\right.$,且f(f(-3))=-1,則a=( 。
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,右焦點(diǎn)到直線y=x的距離為$\sqrt{3}$.
(1)求橢圓E的方程;
(2)已知點(diǎn)M的坐標(biāo)為(2,1),斜率為$\frac{1}{2}$的直線l交橢圓E于兩個(gè)不同點(diǎn)A,B,設(shè)直線MA與MB的斜率為k1,k2,求證:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知隨機(jī)變量X服從正態(tài)分布N(0,σ2),且P(X>-2)=0.9,則P(0≤x≤2)=(  )
A.0.1B.0.6C.0.5D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知四棱錐P-ABCD的底面ABCD是矩形,側(cè)面PAD是等邊三角形,E為棱PD的中點(diǎn)
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)若側(cè)面PAD⊥底面ABCD,PB⊥AC,求二面角B-AC-E的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案