3.a(chǎn)=4,c=$\sqrt{15}$,焦點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程是$\frac{{y}^{2}}{16}+{x}^{2}=1$.

分析 直接求出橢圓的短半軸的長,然后求解橢圓的標(biāo)準(zhǔn)方程即可.

解答 解:a=4,c=$\sqrt{15}$,可得b=1,焦點(diǎn)在y軸上的橢圓的標(biāo)準(zhǔn)方程是:$\frac{{y}^{2}}{16}+{x}^{2}=1$.
故答案為:$\frac{{y}^{2}}{16}+{x}^{2}=1$.

點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程的求法,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)(-2,0)的直線l交拋物線于A,B兩點(diǎn),線段AB的中垂線分別與AB,x軸交于P,Q兩點(diǎn).若P,Q,F(xiàn),B四點(diǎn)共圓,則該圓的半徑是$\frac{\sqrt{65}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知x,y滿足x+y=3,求證:(x+5)2+(y-2)2≥18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.墻上掛著1張高為2m的油畫,它的下沿線距地平面2m,觀畫者的眼睛距地平面1.7m,若使觀畫者對此畫所張的視角達(dá)到最大,則他應(yīng)距墻( 。﹎.
A.$\sqrt{0.52}$B.$\sqrt{0.34}$C.$\sqrt{0.69}$D.$\sqrt{0.41}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.關(guān)于函數(shù)f(x)=$\frac{|x|}{||x|-1|}$,給出下列四個命題:
①當(dāng)x>0時,y=f(x)單調(diào)遞減且沒有最值;
②方程f(x)=kx+b(k≠0)一定有解;
③如果方程f(x)=k有解,則解的個數(shù)一定是偶數(shù);
④y=f(x)是偶函數(shù)且有最小值,
則其中真命題是②.(只要寫標(biāo)題號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足an+1=3an,且a1=6
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{2}$(n+1)an,求b1+b2+…+bn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知B、C是兩個定點(diǎn),|BC|=8,且△ABC的周長為18,求這個三角形頂點(diǎn)A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)橢圓$\frac{{x}^{2}}{10}$+y2=1和雙曲線$\frac{{x}^{2}}{8}$-y2=1的公共點(diǎn)為F1,F(xiàn)2,且P是這兩曲線的交點(diǎn),則△PF1F2的外接圓半徑為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足:a1=1,an+1=qan+$\frac{n}{(-2)^{n}}$(n∈N*
(1)若a1,a2,a3成等比數(shù)列,求實數(shù)q的值;
(2)若|q|≤1,求證:|an|<3.

查看答案和解析>>

同步練習(xí)冊答案