5.已知tanα=4,求:
(1)$\frac{cosα-sinα}{cosα+sinα}$+$\frac{cosα+sinα}{cosα-sinα}$;
(2)2sin2α-2sinαcosα+3cos2α;
(3)2+sinαcosα-cos2α

分析 利用弦化切,代入計(jì)算,即可得出結(jié)論.

解答 解:(1)∵tanα=4,
∴$\frac{cosα-sinα}{cosα+sinα}$+$\frac{cosα+sinα}{cosα-sinα}$=$\frac{1-tanα}{1+tanα}$+$\frac{1+tanα}{1-tanα}$=-$\frac{3}{5}$-$\frac{5}{3}$=-$\frac{34}{15}$;
(2)2sin2α-2sinαcosα+3cos2α=$\frac{2ta{n}^{2}α-tanα+3}{ta{n}^{2}α+1}$=$\frac{2×16-4+3}{16+1}$=$\frac{31}{17}$;
(3)2+sinαcosα-cos2α=2+$\frac{tanα-1}{ta{n}^{2}α+1}$=2+$\frac{3}{17}$=$\frac{37}{17}$.

點(diǎn)評(píng) 本題考查函數(shù)值的計(jì)算,正確弦化切是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不論m為何值,直線(m+1)x-(2m+5)y-6=0過定點(diǎn)(-4,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求證:動(dòng)直線(m2+2m+3)x+(1+m-m2)y+3m2+1=0(其中m∈R)恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).
(2)求經(jīng)過兩條直線2x+3y+1=0和x-3y+4=0的交點(diǎn),并且垂直于直線3x+4y-7=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知AB是拋物線y2=2px(p>0)的過焦點(diǎn)F的一條弦.設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)為M(x0,y0).求證:(1)|AB|=2(x0+$\frac{p}{2}$);
(2)若AB的傾斜角為θ,|AB|=$\frac{2p}{si{n}^{2}θ}$;
(3)x1x2=$\frac{{p}^{2}}{4}$,y1y2=-p2
(4)$\frac{1}{|AF|}$+$\frac{1}{|BF|}$為定值$\frac{2}{p}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)全集U={1,2,3,4,5,6},集合A={1,2,3,5},集合B={2,3,4}.
(1)求A∪B;
(2)求∁UA∩∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)直線l的方程為y=kx+1,圓M的方程為x2+y2-2x-4=0,l與圓交于A,B兩點(diǎn),則AB的最大值2$\sqrt{5}$和最小值2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$mx2+nx,x∈R.
(1)當(dāng)m=1,n=-2時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)n=0,且m>0時(shí).求f(x)在區(qū)間[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若方程x2+2x+a-8=0有兩個(gè)實(shí)根x1,x2,且x1≥3,x2≤1,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.使y=sinωx(ω>0)在區(qū)間[0,1]至少出現(xiàn)200次最大值,則ω的最小值為$\frac{797π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案