9.已知sinα+cosα=$\sqrt{2}$,求下列各式的值:
(1)sinαcosα;
(2)sin3α+cos3α;
(3)sin4α+cos4α;
(4)sin4α-cos4α.

分析 (1)由sinα+cosα=$\sqrt{2}$兩邊同時平方可得1+2sinαcosα=2,從而可得sinαcosα=$\frac{1}{2}$;
(2)sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)結(jié)合sinαcosα=$\frac{1}{2}$,及sin2α+cos2α=1代入可求;
(3)sin4α+cos4α=(sin2α+cos2α)2-2(sinαcosα)2結(jié)合sinαcosα=$\frac{1}{2}$,及sin2α+cos2α=1代入可求;
(4)利用平方差公式結(jié)合sinαcosα=$\frac{1}{2}$,及sin2α+cos2α=1代入可求.

解答 解:(1)∵sinα+cosα=$\sqrt{2}$,
兩邊同時平方可得,1+2sinαcosα=2,
∴sinαcosα=$\frac{1}{2}$.
(2)sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)
=$\sqrt{2}$(1-$\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$.
(3)sin4α+cos4α=(sin2α+cos2α)2-2(sinαcosα)2
=1-2×($\frac{1}{2}$)2=$\frac{1}{2}$.
(4)sin4α-cos4α=(sin2α+cos2α)(sin2α-cos2α)=sin2α-cos2α=(sinα+cosα)(sinα-cosα)=$\sqrt{2}$×$\sqrt{1-2sinαcosα}$=0.

點評 本題主要考查了同角平方關(guān)系的應(yīng)用,解題中要注意一些常見式子的變形形式,屬于公式的基本應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.正△AOB的邊長為a,建立如圖所示的直角坐標(biāo)系xOy,則它的直觀圖的面積是$\frac{\sqrt{6}{a}^{2}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列各角中,是第一象限角的是(  )
A.1200°B.-1140°C.-1350°D.1850°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=loga(1-x2),(a>0,a≠1).
(1)求f(x)的定義域:
(2)判斷f(x)的奇偶性:
(3)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求y=|x+10|+|x-14|+|x-3|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xeX
(1)求這個函數(shù)的導(dǎo)數(shù);
(2)求這個函數(shù)的圖象在點x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系中.不等式組$\left\{\begin{array}{l}{y≥0}\\{x-y+a≥0}\\{2x+y-4≤0}\end{array}\right.$,(a為常數(shù))表示的平面區(qū)域的面積為3,則z=a|x|+y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=$\frac{π}{3}$,a+c=7,且acosC+ccosA=5.則△ABC的面積為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查與市場預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖(1);B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)(注:所示圖中的橫坐標(biāo)表示投資金額,單位為萬元)

(1)分別求出A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案