判斷下列函數(shù)的奇偶性:
(1)y=4x2-
2
x
;
(2)y=
x2-1
x+1
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)求出函數(shù)的定義域為x≠0,關(guān)于原點對稱,再利用定義,判斷f(-x)與f(x)的關(guān)系;
(2)定義域為x≠-1,關(guān)于原點不對稱,是非奇非偶的函數(shù).
解答: 解:(1)求出函數(shù)的定義域為x≠0,關(guān)于原點對稱,
f(-x)=4(-x)2-
2
-x
=4x2+
2
x
≠f(x),f(-x)≠-f(x),
所以函數(shù)是非奇非偶的函數(shù);
(2)函數(shù)定義域為x≠-1,關(guān)于原點不對稱,是非奇非偶的函數(shù).
點評:本題考查了函數(shù)奇偶性的判定,首先求出定義域,判斷是否關(guān)于原點對稱,如果是,再利用定義判斷奇偶性.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某高三7班30名男生1000米跑統(tǒng)測成績的莖葉圖(如果某學生1000米測試成績是x分y秒,x為莖,y為葉)如圖.
測試成績在3分20秒(含)以內(nèi)為“優(yōu)秀',成績介于3分21秒(含)-3分35秒(含)為”良好“,成績在3分36秒(含)-3分50秒(含)為”一般“.成績超過3分50秒的為“較差”.
(1)這次男生1000米跑統(tǒng)測成績中的中位數(shù)和眾位數(shù)分別是多少?
(2)如何評價該班男生的1000米統(tǒng)測成績?
(3)設(shè)ε、η表示該班1000米統(tǒng)測成績不是“良好”也不是“一般”的任兩位同學的測試成績,求事件“ε、η相差超過50秒”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P到兩定點M(-1,0),N(1,0)距離之比為
2

(1)求動點P軌跡C的方程;
(2)若過點N的直線l被曲線C截得的弦長為2
6
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)(x∈D)同時滿足以下條件:
①它在定義域D上是單調(diào)函數(shù);
②存在區(qū)間[a,b]?D使得f(x)在[a,b]上的值域也是[a,b],我們將這樣的函數(shù)稱作“A類函數(shù)”.
(1)已知函數(shù)f(x)=2x-2x.x∈(0,+∞),求證:f(1)=f(2);
(2)函數(shù)f(x)=2x-2x.x∈(0,+∞)是不是“A類函數(shù)”?如果是,試找出[a,b];如果不是,試說明理由;
(3)求使得函數(shù)f(x)=12x-kx+1,x∈(0,+∞)是“A類函數(shù)”的常數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,PA、PB、PC兩兩垂直,過P點作平面ABC的垂線,垂足為G,證明:G為△ABC的垂心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,且滿足an-an-1=n(n>1).
(Ⅰ)求a2,a3及數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1
an
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

性格色彩學創(chuàng)始人樂嘉是江蘇電視臺當紅節(jié)目“非誠勿擾”的特約嘉賓,他的點評視角獨特,語言犀利,給觀眾留下了深刻的印象,某報社為了了解觀眾對樂嘉的喜愛程度,隨機調(diào)查了觀看了該節(jié)目的140名觀眾,得到如下的列聯(lián)表:(單位:名)
總計
喜愛4060100
不喜愛202040
總計6080140
(Ⅰ)從這60名男觀眾中按對樂嘉是否喜愛采取分層抽樣,抽取一個容量為6的樣本,問樣本中喜愛與不喜愛的觀眾各有多少名?
(Ⅱ)根據(jù)以上列聯(lián)表,問能否在犯錯誤的概率不超過0.025的前提下認為觀眾性別與喜愛樂嘉有關(guān).(精確到0.001)
(Ⅲ)從(Ⅰ)中的6名男性觀眾中隨機選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛樂嘉的概率.
附:
p(k2≥k00.100.050.0250.0100.005
k02.7053.8415.0246.6357.879
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

擲一枚質(zhì)地均勻的骰子,事件“朝上出現(xiàn)奇數(shù)點”記為A,事件“朝上的點數(shù)不大于3”記為B.
(1)求P(A)和P(
.
B
);
(2)求P(A∪
.
B
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|2x-1|≥3的解集是
 

查看答案和解析>>

同步練習冊答案