分析 根據(jù)題意,由于7°=45°-38°,可以將sin7°與cos7°轉(zhuǎn)化為sin(45°-38°)與cos(45°-38°),利用差角公式將其展開,則原式可以變形為$\frac{sin45°}{cos45°}$,由特殊角的函數(shù)值計算可得答案.
解答 解:根據(jù)題意,7°=45°-38°,
則原式=$\frac{sin(45°-38°)+cos45°sin38°}{cos(45°-38°)-sin45°sin38°}$=$\frac{sin45°cos38°}{cos45°cos38°}$=$\frac{sin45°}{cos45°}$=1;
故$\frac{sin7°+cos45°sin38°}{cos7°-sin45°sin38°}$=1.
點評 本題考查三角函數(shù)的化簡求值,涉及正弦、余弦的和差公式,關(guān)鍵是分析題目所給的3個角之間的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 已知命題p和q,若“p∨q”為假命題,則命題p和q中必一真一假 | |
B. | 命題“?c∈R,方程2x2+y2=c表示橢圓”的否定是“?c∈R,方程2x2+y2=c不表示橢圓” | |
C. | 命題“若k<9,則方程“$\frac{x^2}{25-k}$+$\frac{y^2}{k-9}$=1表示雙曲線”是假命題 | |
D. | 命題“在△ABC中,若sinA<$\frac{1}{2}$,則A<$\frac{π}{6}$”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2>b2 | B. | |a|>|b| | C. | lg(a-b)>0 | D. | ($\frac{1}{2}$)a>($\frac{1}{2}$)b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\sqrt{3}+1$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com