【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.小華同學(xué)利用劉徽的“割圓術(shù)”思想在半徑為1的圓內(nèi)作正邊形求其面積,如圖是其設(shè)計的一個程序框圖,則框圖中應(yīng)填入、輸出的值分別為( )

(參考數(shù)據(jù):

A. B.

C. D.

【答案】C

【解析】分析:在半徑為的圓內(nèi)作出正邊形,分成個小的等腰三角形,可得正邊形面積是,按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可的結(jié)果.

詳解在半徑為的圓內(nèi)作出正邊形,分成個小的等腰三角形,

每一個等腰三角形兩腰是,頂角是,

所以正邊形面積是

當(dāng)時,;

當(dāng)時,

當(dāng)時,;符合,輸出,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】青島二中有羽毛球社乒乓球社和籃球社,三個社團的人數(shù)分別為27,9,18,現(xiàn)采用分層抽樣的方法從這三個社團中抽取6人參加活動.

(1)求應(yīng)從這三個社團中分別抽取的學(xué)生人數(shù);

(2)將抽取的6名學(xué)生進行編號,編號分別為,,,,,,從這6名學(xué)生中隨機抽出2名參加體育測試.

①用所給的編號列出所有可能的結(jié)果;

②設(shè)事件編號為,的兩名學(xué)生至少有一人被抽到”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的導(dǎo)函數(shù)的零點個數(shù);

(2)當(dāng)時,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個負(fù)整數(shù),則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將標(biāo)號為1,2,…,20的20張卡片放入下列表格中,一個格放入一張卡片,選出每列標(biāo)號最小的卡片,將這些卡片中標(biāo)號最大的數(shù)設(shè)為;選出每行標(biāo)號最大的卡片,將這些卡片中標(biāo)號最小的數(shù)設(shè)為

甲同學(xué)認(rèn)為有可能比大,乙同學(xué)認(rèn)為有可能相等,那么甲乙兩位同學(xué)的說法中(

A. 甲對乙不對 B. 乙對甲不對 C. 甲乙都對 D. 甲乙都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,設(shè)線段A1C與平面ABC1D1交于點Q,求證:B,Q,D1三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)滿足

1)求函數(shù)的解析式;

2)若函數(shù),是否存在實數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;

3)若函數(shù),是否存在實數(shù),使函數(shù)上的值域為?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列判斷正確的是(

A.為奇函數(shù)

B.對任意,,則有

C.對任意,則有

D.若函數(shù)有兩個不同的零點,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)則使得成立的x的取值范圍是(

A.-1,3B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案