16.已知冪函數(shù)f(x)=(m-1)x${\;}^{\frac{1}{2}}$,則下列對(duì)f(x)的說法不正確的是( 。
A.?x0∈[0,+∞],使f(x0)>0B.f(x)的圖象過點(diǎn)(1,1)
C.f(x)是增函數(shù)D.?x∈R,f(-x)+f(x)=0

分析 由條件利用冪函數(shù)的定義和性質(zhì),得出結(jié)論.

解答 解:由題意得m-1=1,即m=2,所以f(x)=${x}^{\frac{1}{2}}$=$\sqrt{x}$,
易知A,B,C正確,根據(jù)函數(shù)f(x)是非奇非偶函數(shù),故D錯(cuò),
故選:D.

點(diǎn)評(píng) 本題主要考查冪函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.圓x2+y2-4axcosθ-4aysinθ+3a2=0(a≠0,θ為參數(shù))的圓心的軌跡為圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且對(duì)任意實(shí)數(shù)x,y滿足f(x-y)=f(x)+f(y)+xy-1恒成立.
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式;
(3)若方程f[(f(2x)]=k恰有兩個(gè)實(shí)數(shù)根在(-2,2)內(nèi),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.集合M={x|lg(1-x)<0},集合N={x|x2≤1},則M∩N=( 。
A.(0,1)B.[0,1)C.[-1,1]D.[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合$A=\{1,2014,\frac{1}{2014}\}$,B={y|y=log2014x,x∈A},則A∩B=( 。
A.$\{\frac{1}{2014}\}$B.{2014}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|y=lg$\sqrt{4-x}$,B={x|23x-1>2x},C={x|log0.7(2x)<log0.7(x-1)},求A∩B,B∪C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)y=lg(1-x)的定義域?yàn)镸,當(dāng)x∈M時(shí),求f(x)=2x+2-3×4x的最大值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$),把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x),下列說法正確的是(  )
A.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù)B.其圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱
C.函數(shù)g(x)是奇函數(shù)D.當(dāng)x∈[0,$\frac{π}{3}$]時(shí),函數(shù)g(x)的值域是[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)θ是第三象限角,且${sin^4}θ+{cos^4}θ=\frac{5}{9}$,求sin2θ;
(2)化簡$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{sin{{170}°}-\sqrt{1-{{sin}^2}{{170}°}}}}$
(3)已知$sinα+cosα=\frac{1}{5}(0<α<π)$,求$\frac{{sin(α-\frac{π}{4})}}{2sinαcosα}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案