12.已知函數(shù)f(x)是R上的奇函數(shù),且x>0時,f(x)=-x2+2x.
(1)求f(x)的解析式;
(2)在如圖的直角坐標(biāo)系中畫出函數(shù)求f(x)的圖象,并求不等式f(x)≥0的解集.

分析 (1)分類討論求函數(shù)的解析式可得f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$;
(2)作其圖象,從而結(jié)合圖象可得不等式f(x)≥0的解集.

解答 解:(1)當(dāng)x=0時,f(0)=0,
當(dāng)x<0時,-x>0,
f(x)=-f(-x)=-(-(-x)2+2(-x))
=x2+2x,
故f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$;
(2)作其圖象如下,

結(jié)合圖象可知,
不等式f(x)≥0的解集為(-∞,-2]∪[0,2].

點評 本題考查了分類討論的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=$\frac{sinx}{x+1}$,則f′(x)等于  ( 。
A.$\frac{(x+1)cosx-sinx}{{(x+1)}^{2}}$B.$\frac{(x+1)sinx-cosx}{x+1}$
C.$\frac{(x+1)sinx-cosx}{{(x+1)}^{2}}$D.$\frac{(x+1)sinx+cosx}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.為了研究鐘表與三角函數(shù)的關(guān)系,建立如圖所示的坐標(biāo)系,設(shè)秒針指向位置P(x,y),若初如位置為${P_0}(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,秒針從P0(注:此時t=0)開始沿順時針方向走動,則點P的縱坐標(biāo)y與時間t的函數(shù)關(guān)系為( 。
A.$y=sin(\frac{π}{30}t+\frac{π}{6})$B.$y=sin(-\frac{π}{60}t-\frac{π}{6})$C.$y=sin(-\frac{π}{30}t+\frac{π}{6})$D.$y=sin(-\frac{π}{30}t-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow a=(m+1,0,2),\overrightarrow b=(6,2n-1,2m)$,若$\overrightarrow a∥\overrightarrow b$,則mn=1或-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\overrightarrow{a}$=(2,m),$\overrightarrow$=(-1,m),若(2$\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$,則|$\overrightarrow{a}$|=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.兩條直線l1:2x+y-1=0和l2:x-2y+4=0的交點為(  )
A.($\frac{2}{5}$,$\frac{9}{5}$)B.(-$\frac{2}{5}$,$\frac{9}{5}$)C.($\frac{2}{5}$,-$\frac{9}{5}$)D.(-$\frac{2}{5}$,-$\frac{9}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$,其中a為常數(shù).
(1)若a=1,判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù)$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$在其定義域上是奇函數(shù),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知條件p:|x+1|>2,條件q:|x|>a,且¬p是¬q的必要不充分條件,則實數(shù)a的取值范圍是( 。
A.0≤a≤1B.1≤a≤3C.a≤1D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.圓心為(1,-2),半徑為4的圓的方程是( 。
A.(x+1)2+(y-2)2=16B.(x-1)2+(y+2)2=16C.(x+1)2+(y-2)2=4D.(x-1)2+(y+2)2=4

查看答案和解析>>

同步練習(xí)冊答案