2.圓心為(1,-2),半徑為4的圓的方程是( 。
A.(x+1)2+(y-2)2=16B.(x-1)2+(y+2)2=16C.(x+1)2+(y-2)2=4D.(x-1)2+(y+2)2=4

分析 根據(jù)已知圓心坐標(biāo)和半徑,可得答案.

解答 解:圓心為(1,-2),半徑為4的圓的方程是(x-1)2+(y+2)2=16,
故選:B.

點評 本題考查的知識點是圓的標(biāo)準(zhǔn)方程,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)是R上的奇函數(shù),且x>0時,f(x)=-x2+2x.
(1)求f(x)的解析式;
(2)在如圖的直角坐標(biāo)系中畫出函數(shù)求f(x)的圖象,并求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=xlnx,若f′(x)=2,則x=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C的極坐標(biāo)方程為ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)-4=0,求圓心的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,函數(shù)$y=\frac{1}{x}$、y=x、y=1的圖象和直線x=1將平面直角坐標(biāo)系的第一象限分成八個部分:①②③④⑤⑥⑦⑧.若冪函數(shù)f(x)的圖象經(jīng)過的部分是④⑧,則f(x)可能是(  )
A.y=x2B.$y=\frac{1}{{\sqrt{x}}}$C.$y={x^{\frac{1}{2}}}$D.y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知不等式x2-5ax+b>0的解集為{x|x>4或x<1}.
(1)求實數(shù)a,b的值;
(2)若0<x<2,$f(x)=\frac{a}{x}+\frac{2-x}$,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若m為區(qū)間[-1,5]上任意一個實數(shù),則方程x2+2x+m=0有實數(shù)根的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在[0,π]內(nèi),方程a(1-2sin2x)+3asinx-2=0有且僅有兩解.求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,PQ分別是AB,BC的三等分點,且AP=$\frac{1}{3}$AB,BQ=$\frac{1}{3}$BC,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{PQ}$=( 。
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$B.-$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$D.-$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$

查看答案和解析>>

同步練習(xí)冊答案