6.已知f(x)=$\frac{sinx}{x+1}$,則f′(x)等于  ( 。
A.$\frac{(x+1)cosx-sinx}{{(x+1)}^{2}}$B.$\frac{(x+1)sinx-cosx}{x+1}$
C.$\frac{(x+1)sinx-cosx}{{(x+1)}^{2}}$D.$\frac{(x+1)sinx+cosx}{x+1}$

分析 利用導(dǎo)數(shù)運算法則求導(dǎo)f′(x)=$\frac{(sinx)′(x+1)-sinx•(x+1)′}{(x+1)^{2}}$.

解答 解:∵f(x)=$\frac{sinx}{x+1}$,
∴f′(x)=$\frac{(sinx)′(x+1)-sinx•(x+1)′}{(x+1)^{2}}$
=$\frac{(x+1)cosx-sinx}{(x+1)^{2}}$,
故選:A.

點評 本題考查了導(dǎo)數(shù)運算法則與導(dǎo)數(shù)公式的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=(2-x)ex-ax-a,若不等式f(x)>0恰好存在兩個正整數(shù)解,則實數(shù)a的取值范圍是( 。
A.[-$\frac{{e}^{3}}{4}$,0)B.[-$\frac{e}{2}$,0)C.[-$\frac{{e}^{3}}{4}$,$\frac{e}{2}$)D.[-$\frac{{e}^{3}}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的公差d=2,其前n項和為Sn,數(shù)列{bn}的首項b1=2,其前n項和為Tn,滿足2${\;}^{(\sqrt{{S}_{n}}+1)}$=Tn+2,n∈N*
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)求數(shù)列{anbn}的前n項和Wn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知sinα=-$\frac{4}{5}$.sinβ=$\frac{5}{13}$,且180°<α<270°,90°<β<180°,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$先畫出函數(shù)圖,求在[0,4]上的定積分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一臺發(fā)電機產(chǎn)生地交流電的電壓U和時間t之間關(guān)系的圖象如圖所示,由圖象說出它的周期、頻率和電壓的最大值,并求出電壓U和時間t之間的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在等比數(shù)列{an}中,a1=$\frac{1}{2}$,a4=-4.
(1)求通項公式an;
(2)求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若方程x2-mx+3=0的兩根滿足一根大于1,一根小于1,則m的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(4,+∞)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)是R上的奇函數(shù),且x>0時,f(x)=-x2+2x.
(1)求f(x)的解析式;
(2)在如圖的直角坐標(biāo)系中畫出函數(shù)求f(x)的圖象,并求不等式f(x)≥0的解集.

查看答案和解析>>

同步練習(xí)冊答案