分析 (1)利用二倍角公式化簡(jiǎn)求得f(x)=2$\sqrt{3}$sin(2x+$\frac{π}{6}$),利用正弦函數(shù)圖象和性質(zhì)f(x)的最小正周期和單調(diào)遞減區(qū)間,
(2)根據(jù)x的取值范圍求得2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],求f(x)的最大和最小值.
解答 解:f(x)=4cos2x+2$\sqrt{3}$sinxcosx-2sin2x,
=2(2cos2x-1)+2+$\sqrt{3}$sin2x+1-2sin2x-1,
=3cos2x+$\sqrt{3}$sin2x+1,
=2$\sqrt{3}$sin(2x+$\frac{π}{6}$)+1,
函數(shù)f(x)的最小正周期T=$\frac{2π}{ω}$=π,
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$得:kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$(k∈Z),
∴函數(shù)的單調(diào)減區(qū)間為:[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$];
(2)x∈[0,$\frac{π}{2}$],2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
f(x)=2$\sqrt{3}$sin(2x+$\frac{π}{6}$)+1,當(dāng)x=$\frac{π}{6}$時(shí)取最大值為2$\sqrt{3}$+1,
∴當(dāng)2x+$\frac{π}{6}$=$\frac{7π}{6}$,x=$\frac{π}{2}$時(shí),取最小值為-$\sqrt{3}$+1.
點(diǎn)評(píng) 本題考查根據(jù)二倍角公式化簡(jiǎn),根據(jù)正弦函數(shù)圖象及性質(zhì)求得函數(shù)的最小周期、單調(diào)區(qū)間及最值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,1] | C. | [-2,0) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{24}{5}$ | C. | $\frac{3}{16}$ | D. | $\frac{9}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{27}$ | B. | $\frac{3}{25}$ | C. | $\frac{5}{28}$ | D. | $\frac{2}{15}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com