6.i是虛數(shù)單位,若$\frac{2+i}{1+i}$=a+bi(a,b∈R),則lg(a+b)的值是(  )
A.-2B.-1C.0D.$\frac{1}{2}$

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)、復(fù)數(shù)相等、對數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:∵$\frac{2+i}{1+i}$=$\frac{(2+i)(1-i)}{(1+i)(1-i)}$=$\frac{3-i}{2}$=a+bi,
∴$a=\frac{3}{2}$,b=-$\frac{1}{2}$.
∴l(xiāng)g(a+b)=lg1=0.
故選:C.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)、復(fù)數(shù)相等、對數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sinα=$\frac{2}{3}$,則sin($α-\frac{π}{2}$)=( 。
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.-$\frac{\sqrt{5}}{3}$D.±$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等比數(shù)列{an}中,a1+a2+…+a6=10,$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_6}=5$,則a1•a2•…•a6=( 。
A.2B.8C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y≥0\\ x+y-5≤0\\ y≥\frac{1}{4}{x^2}+\frac{1}{4}\end{array}\right.$,則 $\frac{{{{(x+y)}^2}+{y^2}}}{{{x^2}+2{y^2}}}$的取值范圍為[$\frac{13}{9}$,$\frac{5}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=log2x,若常數(shù)M滿足:對于?x1∈[1,22016],?唯一的x2∈[1,22016],使得f(x1)-M=M-f(x2)成立,則M=1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.平面α與平面β平行的條件可以是( 。
A.α內(nèi)有無窮多條直線都與β平行B.直線a∥α,a∥β且a?α,a?β
C.直線a?α,b?β且a∥β,b∥αD.α內(nèi)的任意直線都與β平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(m+x)lnx在(1,f(1))處的切線與直線y=2x-4平行.
(1)求f(x)在區(qū)間[e,+∞)上的最小值;
(2)若對任意x∈(0,1),都有$\frac{1}{a}$f(x)+2-2x<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U=R,集合A={x|y=$\sqrt{2-x}$},B={x|${2}^{-{x}^{2}+3x}$>1},則(∁UA)∩B=( 。
A.{x|2≤x<3}B.{x|2<x<3}C.{x|x≥3}D.{x|2<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=|lg({x-\frac{1}{2}})|-cosx$的零點(diǎn)的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案