15.已知全集U=R,集合A={x|y=$\sqrt{2-x}$},B={x|${2}^{-{x}^{2}+3x}$>1},則(∁UA)∩B=(  )
A.{x|2≤x<3}B.{x|2<x<3}C.{x|x≥3}D.{x|2<x≤3}

分析 解根式不等式化簡集合A,解指數(shù)不等式化簡集合B,進(jìn)一步求出A的補集,則(∁UA)∩B的答案可求.

解答 解:集合A={x|y=$\sqrt{2-x}$}={x|x≤2},B={x|${2}^{-{x}^{2}+3x}$>1}={x|0<x<3},
∴∁UA={x|x>2}.
則(∁UA)∩B={x|x>2}∩{x|0<x<3}={x|2<x<3}.
故選:B.

點評 本題考查了交、并、補集的混合運算,考查了不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{1+cos2x}{{2sin(\frac{π}{2}-x)}}+sinx+{a^2}sin(x+\frac{π}{4})$
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{5π}{12}$]時,函數(shù) y=f(x)的最小值為 $1+\frac{{\sqrt{2}}}{2}$,試確定常數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.i是虛數(shù)單位,若$\frac{2+i}{1+i}$=a+bi(a,b∈R),則lg(a+b)的值是(  )
A.-2B.-1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}{x}^{3}-ax+4,(a>0)$
 (1)討論函數(shù) f (x)的單調(diào)性;
(2)若對任意的a∈[1,4),都存在x0∈(2,3]使得不等式f(x0)+ea+2a>m成立,求實數(shù)m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)解方程:${log_3}({{x^2}-3})=1+{log_3}(x-\frac{5}{3})$
(2)已知命題α:2≤x,命題β:|x-m|≤1,且命題α是β的必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知有窮數(shù)列:${a_1},{a_2},{a_3},…,{a_k}\;(k∈{N^*},k≥3)$的各項均為正數(shù),且滿足條件:
①a1=ak;②${a_n}+\frac{2}{a_n}=2{a_{n+1}}+\frac{1}{{{a_{n+1}}}}\;\;(n=1,2,3,…,k-1)$.
(Ⅰ)若k=3,a1=2,求出這個數(shù)列;
(Ⅱ)若k=4,求a1的所有取值的集合;
(Ⅲ)若k是偶數(shù),求a1的最大值(用k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.對任意正整數(shù)n,設(shè)an是方程x2+$\frac{x}{n}$=1的正根.求證:
(1)an+1>an;
(2)$\frac{1}{2{a}_{2}}$+$\frac{1}{3{a}_{3}}$+…+$\frac{1}{n{a}_{n}}$<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在如圖所示的幾何體中,三棱錐D-ABC的各條棱長均為2,OA,OB,OC兩兩垂直,則下列說法正確的是(  )
A.OA,OB,OC的長度可以不相等B.直線OB∥平面ACD
C.直線OD與BC所成的角是45°D.直線AD與OB所成的角是45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是(  )
A.72cm3B.90cm3C.108cm3D.138cm3

查看答案和解析>>

同步練習(xí)冊答案