17.在等比數(shù)列{an}中,a1+a2+…+a6=10,$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_6}=5$,則a1•a2•…•a6=(  )
A.2B.8C.$\frac{1}{2}$D.$\frac{1}{8}$

分析 設(shè)等比數(shù)列{an}的公比為q≠1,根據(jù)a1+a2+…+a6=10,$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_6}=5$,利用等比數(shù)列的前n項(xiàng)和公式可得:${a}_{1}^{2}{q}^{5}$=2.再利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q≠1,
∵a1+a2+…+a6=10,$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_6}=5$,
∴$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=10,$\frac{\frac{1}{{a}_{1}}[1-(\frac{1}{q})^{6}]}{1-\frac{1}{q}}$=5,
∴${a}_{1}^{2}{q}^{5}$=2.
則a1•a2•…•a6=${{a}_{1}}^{6}$q1+2+…+5=$({a}_{1}^{2}{q}^{5})^{3}$=23=8.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*,記T2n為數(shù)列{an}的前2n項(xiàng)和,數(shù)列{bn}是首項(xiàng)和公比都是2的等比數(shù)列,則使不等式(T2n+$\frac{1}{_{n}}$)•$\frac{1}{_{n}}$<1成立的最小整數(shù)n為( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知含有3個(gè)元素的集合{a,$\frac{a}$,1}={a2,a+b,0},則a2015+b2015=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{1+cos2x}{{2sin(\frac{π}{2}-x)}}+sinx+{a^2}sin(x+\frac{π}{4})$
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{5π}{12}$]時(shí),函數(shù) y=f(x)的最小值為 $1+\frac{{\sqrt{2}}}{2}$,試確定常數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,則目標(biāo)函數(shù)z=6x+y的最大值為( 。
A.2B.$\frac{7}{3}$C.6D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,三棱錐P-ABC中,PA⊥平面ABC,AB=BC,AC=2$\sqrt{2}$,PA=2,D是AC的中點(diǎn)
(I)證明:BD⊥平面PAC;
(Ⅱ)設(shè)二面角A-PB-C為90°,求PA與平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知冪函數(shù)f(x)=k•xa的圖象過點(diǎn)$(3,\frac{{\sqrt{3}}}{3})$,則k+a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.i是虛數(shù)單位,若$\frac{2+i}{1+i}$=a+bi(a,b∈R),則lg(a+b)的值是( 。
A.-2B.-1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.對(duì)任意正整數(shù)n,設(shè)an是方程x2+$\frac{x}{n}$=1的正根.求證:
(1)an+1>an;
(2)$\frac{1}{2{a}_{2}}$+$\frac{1}{3{a}_{3}}$+…+$\frac{1}{n{a}_{n}}$<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案