5.過點(diǎn)(-1,0)的直線1與曲線y=$\sqrt{x}$相切,則曲線y=$\sqrt{x}$與l及x軸所圍成的封閉圖形的面積為$\frac{1}{3}$.

分析 先求出切線方程,再利用定積分求面積.

解答 解:∵y=$\sqrt{x}$,∴y′=$\frac{1}{2\sqrt{x}}$,
設(shè)切點(diǎn)為(a,$\sqrt{a}$),則切線方程為y-$\sqrt{a}$=$\frac{1}{2\sqrt{a}}$(x-a),
代入(-1,0),可得0-$\sqrt{a}$=$\frac{1}{2\sqrt{a}}$(-1-a),
∴-1-a=-2a,
∴a=1,
∴切線方程為y-1=$\frac{1}{2}$(x-1),即y=$\frac{1}{2}$x+$\frac{1}{2}$,
∴曲線y=$\sqrt{x}$與l及x軸所圍成的封閉圖形的面積為$\frac{1}{2}×1×\frac{1}{2}$+${∫}_{0}^{1}(\frac{1}{2}x+\frac{1}{2}-\sqrt{x})dx$=$\frac{1}{4}$+$(\frac{1}{4}{x}^{2}+\frac{1}{2}x-\frac{2}{3}{x}^{\frac{3}{2}}){|}_{0}^{1}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查切線方程,考查定積分知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=2sin(2πx)的圖象與直線y=x的交點(diǎn)個(gè)數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=-2lnx+2mx2+(8-m)x,m∈R.
(1)若y=f(x)在x=2處有極值,求m的值;
(2)求y=f(x)在[m2,m]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=x-(x+1)ln(x+1),(x>-1).
(Ⅰ)求曲線y=f(x)在x=e-1處的切線方程;
(Ⅱ)設(shè)函數(shù)F(x)=1-mx-$\frac{1+f(x-1)}{x}$,G(x)=(1-m)x-$\frac{m}{2x}$-2m,對(duì)任意x∈[$\frac{1}{e}$,1],是否存在m∈($\frac{1}{2}$,1),使得F(x)>G(x)+1成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由;
(Ⅲ)證明:當(dāng)m>n>0時(shí),(1+m)n<(1+n)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.不等式x2-x-a2-a+1>0對(duì)x∈R恒成立,則實(shí)數(shù)a的取值范圍為($-\frac{3}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.三棱錐P-ABC中,PA⊥平面ABC且PA=2,△ABC是邊長(zhǎng)為$\sqrt{3}$的等邊三角形,則該三棱錐外接球的表面積為(  )
A.$\frac{4π}{3}$B.C.D.20π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=log(a-1)(ax+4)在[-1,1]上是單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍是(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知|$\overrightarrow{a}$||$\overrightarrow$|sinθ=$\frac{\sqrt{3}}{2}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,$\overrightarrow{a}$•$\overrightarrow$=$\frac{3}{2}$,|$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$|,則|$\overrightarrow{a}$-$\overrightarrow$|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖1,△ABC,AB=AC=4,∠BAC=$\frac{2π}{3}$,D為BC的中點(diǎn),DE⊥AC,沿DE將△CDE折起至△C′DE,如圖2,且C′在面ABDE上的投影恰好是E,連接C′B,M是C′B上的點(diǎn),且C′M=$\frac{1}{2}$MB.
(1)求證:AM∥面C′DE;
(2)求三棱錐B-AMD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案