18.化簡:
(1)sin(-1071°)•sin99°+sin(-171°)•sin(-261°).
(2)1+sin(α-2π)•sin(π+α)-2cos2(-α);
(3)$\frac{sin(-2π-α)•tan(π-α)}{cos(-2π+α)•tan(π+α)}$.

分析 (1)直接利用誘導(dǎo)公式化簡然后通過兩角和與差的三角函數(shù)求解即可.
(2)直接利用誘導(dǎo)公式化簡求值即可.
(3)直接利用誘導(dǎo)公式化簡,結(jié)合同角三角函數(shù)基本關(guān)系式即可得解.

解答 解:(1)sin(-1071°)•sin99°+sin(-171°)•sin(-261°)
=sin(-1080°+9°)•cos9°+sin(-180°+9°)•sin(-270°+9°)
=sin9°•cos9°-sin9°•cos9°
=0;
(2)1+sin(α-2π)•sin(π+α)-2cos2(-α)
=1-sinα•sinα-2cos2α
=-cos2α.
(3)$\frac{sin(-2π-α)•tan(π-α)}{cos(-2π+α)•tan(π+α)}$=$\frac{(-sinα)•(-tanα)}{cosα•tanα}$=tanα.

點(diǎn)評 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)基本關(guān)系式,誘導(dǎo)公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a1,a2,a3,a4是各項(xiàng)均為正數(shù)的等差數(shù)列,其公差d大于零,若線段l1,l2,l3,l4的長分別為a1,a2,a3,a4,則( 。
A.對任意的d,均存在以l1,l2,l3為三邊的三角形
B.對任意的d,均不存在以為l1,l2,l3三邊的三角形
C.對任意的d,均存在以l2,l3,l4為三邊的三角形
D.對任意的d,均不存在以l2,l3,l4為三邊的三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.當(dāng)a為何值時(shí),cosx=a2-1有意義?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{{4}^{x}-8}$的定義域是[$\frac{3}{2},+∞$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,直線3x-4y-12=0經(jīng)過橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在棱長為1的正方體骨架內(nèi)放一球,使該球與各棱都相切,則該球的體積為$\frac{8\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-\frac{1}{2}x+1,x≤0}\end{array}\right.$,則f[f(2-2e)]的值是( 。
A.eB.$\frac{1}{e}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.寫出由下列各組命題構(gòu)成的“p∨q”、“p∧q”、“非p”形式的復(fù)合命題,并判斷真假.
(1)p:1是素?cái)?shù);q:1是方程x2+2x-3=0的根;
(2)p:平行四邊形的對角線相等;q:平行四邊的對角線互相垂直;
(3)p:方程x2+x-1=0的兩實(shí)根的符號相同;q:方程x2+x-1=0的兩實(shí)根的絕對值相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.y=tan(ωx+φ)的最小正周期為$\frac{π}{|ω|}$.

查看答案和解析>>

同步練習(xí)冊答案