先閱讀下面的材料:“求
1+
1+
1+…
的值時,采用了如下方法:令
1+
1+
1+…
=x,則有x=
1+x
,兩邊同時平方,得x2=1+x,解得x=
1+
5
2
(負值舍去).”----根據(jù)以上材料所蘊含的數(shù)學思想方法,可以求得函數(shù)F(x)=
3+
3+
3+
3+x
-x的零點為
 
考點:類比推理
專題:推理和證明
分析:利用類比的方法,令f(x)=
3+x
,則F(x)=f(f(f(f(x)))-x.解得即可,
解答: 解:令f(x)=
3+x
,則F(x)=f(f(f(f(x)))-x.若f(x0)=x0,則f(f(x0))=f(x0)=x0,…,f(f(f(f(x0)))=x0;反過來,若x0滿足f(f(f(f(x0)))=x0,由于f(x)在[0,+∞)上單調(diào)遞增,由反證法可知,必有f(x0)=x0.綜上可知,
方程f(f(f(f(x)))=x與f(x)=x同解,得x=
1+
13
2
(負值舍去).
故答案為:
1+
13
2
點評:本題考查類比推理,考查學生的計算能力,解題的關(guān)鍵是掌握類比的方法
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意x,y∈R都滿足f(x+y)=f(x)+f(y)+1,且f(
1
2
)=0,數(shù)列{an}滿足:an=f(n),n∈N*
(Ⅰ)求f(0)及f(1)的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若bn=(
1
4
 an-(
1
2
 3+an,試問數(shù)列{bn}是否存在最大項和最小項?若存在,求出最大項和最小項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},a1=1,an+1=an+
1+p
1-p
an2(n∈N*,p∈R,p≠1).
(Ⅰ)求數(shù)列{an}為單調(diào)增數(shù)列的充要條件;
(Ⅱ)當p=
1
3
時,令bn=
1
1+2an
,數(shù)列{bn}的前n項和為Sn.求證:
1
2
-
1
5n
<Sn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

運行如圖所示程序,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將曲線方程ρ=
2
cos(θ-
π
4
)化成直角坐標方程:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若aij表示n×n階矩陣
1247
35812
691318
10141925
?????ann
中第i行、第j列的元素(i、j=1,2,3,…,n),則ann=
 
(結(jié)果用含有n的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱柱ABC-A1B1C1的底面邊長與側(cè)棱長相等.螞蟻甲從A點沿表面經(jīng)過棱BB1,CC1爬到點A1,螞蟻乙從B點沿表面經(jīng)過棱CC1爬到點A1.如圖,設(shè)∠PAB=α,∠QBC=β,若兩只螞蟻各自爬過的路程最短,則α+β=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

ρcosθ+2ρsinθ=1的直角坐標方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+2)=f(x)+1,且x∈[0,1]時,f(x)=4x,x∈(1,2)時,f(x)=
f(1)
x
,令g(x)=2f(x)-x-4x∈[-6,2],則函數(shù)g(x)的零點個數(shù)為(  )
A、9B、8C、7D、6

查看答案和解析>>

同步練習冊答案