4.已知數(shù)列{an}中,an=2-n,{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前n項和為Sn,求Sn

分析 化簡可得$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$=$\frac{1}{(2n-3)(2n-1)}$=$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),從而求其前n項和.

解答 解:∵an=2-n,
∴a2n-1=2-(2n-1)=3-2n,a2n+1=2-(2n+1)=1-2n,
∴$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$=$\frac{1}{(2n-3)(2n-1)}$
=$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),
∴Sn=$\frac{1}{2}$(-1-1)+$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+…+$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$)
=$\frac{1}{2}$(-1-1+1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-3}$-$\frac{1}{2n-1}$)
=$\frac{1}{2}$(-1-$\frac{1}{2n-1}$)=-$\frac{n}{2n-1}$.

點評 本題考查了數(shù)列通項公式的求法及裂項求和法的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( 。
A.$f(x)=\frac{{2-{x^2}}}{2x}$B.$f(x)=\frac{sinx}{x^2}$C.$f(x)=-\frac{{{{cos}^2}x}}{x}$D.$f(x)=\frac{cosx}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知焦點在y軸上的橢圓E的中心是原點O,離心率等于$\frac{\sqrt{3}}{2}$,以橢圓E的長軸和短軸為對角線的四邊形的周長為4$\sqrt{5}$,直線l:y=kx+m與y軸交于點P,與橢圓E交于A、B兩個相異點,且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$.
(I)求橢圓E的方程;
(Ⅱ)是否存在m,使$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若x,y∈R+,xy2=4,則x+2y的最小值,x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若$\overrightarrow{a}$=(x,-1,0),$\overrightarrow$=(3,x2,9)的夾角為鈍角,則實數(shù)x的取值范圍為(-∞,0)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)a、b是實數(shù),則(a-2b)2+$\frac{1}{4}$b2-5b+2a+$\frac{5}{2}$的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.i為虛數(shù)單位,則復(fù)數(shù)$\frac{1}{{3i}^{3}+{4i}^{4}+{5i}^{5}+{6I}^{6}}$的虛部為(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-$\frac{1}{4}$iD.$\frac{1}{4}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}中,a3-a7=-12,a4+a6=-4,求它的前10項和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,$\overrightarrow a=(2,0)$,$|{\overrightarrow b}$|=1,則$|{\overrightarrow a+2\overrightarrow b}$|=2$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案