分析 化簡可得$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$=$\frac{1}{(2n-3)(2n-1)}$=$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),從而求其前n項和.
解答 解:∵an=2-n,
∴a2n-1=2-(2n-1)=3-2n,a2n+1=2-(2n+1)=1-2n,
∴$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$=$\frac{1}{(2n-3)(2n-1)}$
=$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),
∴Sn=$\frac{1}{2}$(-1-1)+$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+…+$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$)
=$\frac{1}{2}$(-1-1+1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-3}$-$\frac{1}{2n-1}$)
=$\frac{1}{2}$(-1-$\frac{1}{2n-1}$)=-$\frac{n}{2n-1}$.
點評 本題考查了數(shù)列通項公式的求法及裂項求和法的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\frac{{2-{x^2}}}{2x}$ | B. | $f(x)=\frac{sinx}{x^2}$ | C. | $f(x)=-\frac{{{{cos}^2}x}}{x}$ | D. | $f(x)=\frac{cosx}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | -$\frac{1}{4}$i | D. | $\frac{1}{4}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com