17.已知f(x)是定義在R上的偶函數(shù),且f(2)=8,則f(-2)的值為( 。
A.-16B.16C.-8D.8

分析 根據(jù)函數(shù)奇偶性的定義進(jìn)行轉(zhuǎn)化即可.

解答 解:∵f(x)是定義在R上的偶函數(shù),且f(2)=8,
∴f(-2)=f(2)=8,
故選:D.

點(diǎn)評 本題主要考查函數(shù)值的計(jì)算,利用函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,P是橢圓上一點(diǎn),|PF1|=2|PF2|,∠F1PF2=$\frac{π}{3}$,則橢圓離心率的值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,三棱柱ABC-A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C菱形,∠CBB1=60°,AB⊥平面BB1C1C,且D是BC的中點(diǎn).
(1)求證:A1B∥平面ADC1
(2)若AB=2,求三棱錐B1-ABC體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直三棱柱ABC-A1B1C1中,AB=AC=2,$∠BAC=\frac{2π}{3}$,AA1=4,則該三棱柱的外接球的體積為$\frac{{64\sqrt{2}π}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在復(fù)平面內(nèi),復(fù)數(shù)(1-2i)2對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD是正三角形,PD⊥CD,E為PC的中點(diǎn).
(Ⅰ)求證:平面ABE⊥平面PCD;
(Ⅱ)求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為4,且以雙曲線$\frac{y^2}{4}-{x^2}$=1的實(shí)軸為短軸,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b∈R+,a+b=1,求證:
①(a+$\frac{1}{a}$)(b+$\frac{1}$)≥$\frac{25}{4}$;
②(a+$\frac{1}{a}$)2+(b+$\frac{1}$)2≥$\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若拋物線y2=2px(p>0)上一點(diǎn)M到準(zhǔn)線及對稱軸的距離分別為5和4,若點(diǎn)M在焦點(diǎn)F的右側(cè),則此時M點(diǎn)的橫坐標(biāo)為1或4,拋物線方程為y2=4x或y2=16x.

查看答案和解析>>

同步練習(xí)冊答案