20.曲線:$y=\sqrt{1-{x^2}}$與直線y=x+b恰有1個公共點(diǎn),則b的取值范圍為[-1,1)∪{$\sqrt{2}$}..

分析 確定曲線$y=\sqrt{1-{x^2}}$所對應(yīng)的圖象,求出兩個極端位置,即可求得結(jié)論.

解答 解:依題意可知曲線$y=\sqrt{1-{x^2}}$可整理成y2+x2=1(y≥0),圖象如圖所示

直線與半圓相切時,原點(diǎn)到直線的距離為1,即$\frac{\sqrt{2}}$=1,∴b=$\sqrt{2}$
直線過半圓的右頂點(diǎn)時,1+b=0,∴b=-1
線過半圓的左頂點(diǎn)時,-1+b=0,∴b=1
∴曲線:$y=\sqrt{1-{x^2}}$與直線y=x+b恰有1個公共點(diǎn)時,b的取值范圍為[-1,1)∪{$\sqrt{2}$}.
故答案為:[-1,1)∪{$\sqrt{2}$}.

點(diǎn)評 本題主要考查了直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.求下列正切值:tan2013π=0;tan$\frac{7π}{3}$=$\sqrt{3}$;tan(-2100°)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.用弧度制表示終邊落在直線y=x上的角集為{α|α=k$π+\frac{π}{4},k∈Z$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=ax2+bx+1(a,b∈R,a<0)有兩個零點(diǎn),其中一個零點(diǎn)在(-2,-1)內(nèi),則$\frac{a-1}$的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角是120°,且滿足$\overrightarrow a=(-2\;,\;1)$,$\overrightarrow a•\overrightarrow b=-\sqrt{10}$,則|$\overrightarrow$|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項和為Sn,若$\overrightarrow{OP}={a_{1007}}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+{a_{1008}}\overrightarrow{OC}$且P,A,B,C四點(diǎn)共面(該面不過點(diǎn)O),則S2014=( 。
A.503B.$\frac{1007}{2}$C.1006D.1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}ln|tx|-ln(x+1),x>-1且x≠0}\\{tx+{t}^{2}-2,x≤-1}\end{array}\right.$,恰有一個零點(diǎn),則實(shí)數(shù)t的取值范圍是(-4,-1)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ln(x+1)-x(x>-1).
(1)求f(x)的單調(diào)區(qū)間;
(2)若k∈Z,且f(x-1)+x>k(1-$\frac{3}{x}$)對任意x>1恒成立,求k的最大值;
(3)對于在(0,1)中的任意一個常數(shù)a,是否存在正數(shù)x0,使得e${\;}^{f({x}_{0})}$<1-$\frac{a}{2}$x02成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若直線x+(a-1)y+1=0與直線ax+2y+2=0垂直,則實(shí)數(shù)a的值為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案