7.已知x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-1≥0\\ y≤1\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為5.

分析 畫(huà)出滿(mǎn)足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),結(jié)合函數(shù)圖象求出z的最大值即可.

解答 解:畫(huà)出滿(mǎn)足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{x-y-1=0}\\{y=1}\end{array}\right.$,解得A(2,1),
由z=2x+y得:y=-2x+z,
平移直線y=-2x,
顯然直線過(guò)A(2,1)時(shí),z最大,
z的最大值是5,
故答案為:5.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x-y+$\sqrt{2}$=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A,B,當(dāng)$|\overrightarrow{OA}-\overrightarrow{OB}|<\frac{{2\sqrt{5}}}{3}$時(shí),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若等差數(shù)列{4n+1}與等比數(shù)列{3n}的公共項(xiàng)按照原來(lái)的順序排成數(shù)列為{an},則a8=98

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)ξ為隨機(jī)變量,從側(cè)面均是等邊三角形的正四棱錐的8條棱中任選兩條,ξ為這兩條棱所成的角.
(1)求概率$P(ξ=\frac{π}{2})$;
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)向量$\overrightarrow a$=(-2,3),$\overrightarrow b$=(-1,x-1),若$\overrightarrow a$∥$\overrightarrow b$,則x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某單位利用周末時(shí)間組織員工進(jìn)行一次“健康之路,攜手共筑”徒步走健身活動(dòng),有n人參加,現(xiàn)將所有參加人員按年齡情況分為[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六組,其頻率分布直方圖如圖所示.已知[35,40)之間的參加者有8人.
(1)求n的值并補(bǔ)全頻率分布直方圖;
(2)已知[30,40)歲年齡段中采用分層抽樣的方法抽取5人作為活動(dòng)的組織者,其中選取3人作為領(lǐng)隊(duì),記選取的3名領(lǐng)隊(duì)中年齡在[30,35)歲的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將一個(gè)圓的八個(gè)等分點(diǎn)分成相間的兩組,連接每組的四個(gè)點(diǎn)得到兩個(gè)正方形.去掉兩個(gè)正方形內(nèi)部的八條線段后可以形成一正八角星,如圖所示.設(shè)正八角星的中心為O,并且 $\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{OB}$=$\overrightarrow{{e}_{2}}$,若將點(diǎn)O到正八角星16個(gè)頂點(diǎn)的向量,都寫(xiě)成為λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$,λ,μ∈R的形式,則λ+μ的最大值為(  )
A.$\sqrt{2}$B.2C.1+$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列是有關(guān)三角形ABC的幾個(gè)命題,
①若tanA+tanB+tanC>0,則△ABC是銳角三角形;
②若sin2A=sin2B,則△ABC是等腰三角形;
③若($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,則△ABC是等腰三角形;
④若cosA=sinB,則△ABC是直角三角形; 
其中正確命題的個(gè)數(shù)是( 。
A..1B..2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案