18.已知拋物線的方程為2y=x2,則該拋物線的準線方程為$y=-\frac{1}{2}$.

分析 先根據(jù)拋物線的標準方程得到焦點在y軸上以及2p,再直接代入即可求出其準線方程.

解答 解:因為拋物線的標準方程為:x2=2y,焦點在y軸上;
所以:2p=2,即p=1,
所以準線方程y=-$\frac{p}{2}$=-$\frac{1}{2}$.
故答案為:$y=-\frac{1}{2}$.

點評 本題主要考查拋物線的基本性質(zhì).解決拋物線的題目時,一定要先判斷焦點所在位置.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.定義:如果一個菱形的四個頂點均在一個橢圓上,那么該菱形叫做這個橢圓的內(nèi)接菱形,且該菱形的對角線的交點為這個橢圓的中心.
如圖,在平面直角坐標系xOy中,設(shè)橢圓$\frac{x^2}{4}$+y2=1的所有內(nèi)接菱形構(gòu)成的集合為F.
(1)求F中菱形的最小的面積;
(2)是否存在定圓與F中的菱形都相切?若存在,求出定圓的方程;若不存在,說明理由;
(3)當菱形的一邊經(jīng)過橢圓的右焦點時,求這條邊所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=2cos(${\frac{π}{3}$x+φ)圖象的一個對稱中心為(2,0),且|φ|<$\frac{π}{2}$.要得到函數(shù)f(x)的圖象,可將函數(shù)y=2cos$\frac{π}{3}$x的圖象(  )
A.向左平移$\frac{1}{2}$個單位長度B.向右平移$\frac{1}{2}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知袋子中裝有紅色球1個,黃色球1個,黑色球n個(小球大小形狀相同),從中隨機抽取1個小球,取到黑色小球的概率是$\frac{1}{3}$.
(Ⅰ)求n的值;
(Ⅱ)若紅色球標號為0,黃色球標號為1,黑色球標號為2,現(xiàn)從袋子中有放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b.
(。┯洝癮+b=2”為事件A,求事件A的概率;
(ⅱ)在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的表達式及最小正周期.
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,四棱柱ABCD-A′B′C′D′中,側(cè)棱AA′⊥ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA′=AB=2,E為棱AA′的中點.
(1)求證:B′C′⊥CE;
(2)求二面角B′-CE-C′的余弦值;
(3)設(shè)點M在線段C′E上,且直線AM與平面ADD′A′所成角的正弦值為$\frac{{\sqrt{2}}}{6}$,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在平面直角坐標系xOy中,雙曲線中心在原點,焦點在x軸上,漸近線方程為4x±3y=0,則它的離心率為( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{\sqrt{7}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題正確的個數(shù)為( 。
①命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
②若命題P:?x∈R,x2+x+1≠0,則¬p:?x∈R,x2+x+1=0
③若p∨q為真命題,則p,q均為真命題
④“x>3”是“x2-3x+2>0”的充分不必要條件
⑤在△ABC中,若A>B,則sinA>sinB.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),$\overrightarrow{c}$=(-2,3),若(λ$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{c}$,則λ=-$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案