1.如圖,直線AB經(jīng)過圓O上的點(diǎn)C,并且OA=OB,CA=CB,圓O交直線OB于點(diǎn)E、D,其中D在線段OB上.連結(jié)EC,CD.
(Ⅰ)證明:直線AB是圓O的切線;
(Ⅱ)若tan∠CED=$\frac{1}{2}$,圓O的半徑為3,求OA的長.

分析 (Ⅰ)連結(jié)OC,推導(dǎo)出OC⊥AB,由此能證明AB是圓O的切線.
(Ⅱ)由題意先推導(dǎo)出△BCD∽△BEC,從而得到$\frac{BD}{BC}=\frac{CD}{EC}=\frac{1}{2}$,由此能求出OA.

解答 證明:(Ⅰ)連結(jié)OC,∵OA=OB,CA=CB,
∴OC⊥AB,
又OC是圓O的半徑,∴AB是圓O的切線.
解:(Ⅱ)∵直線AB是圓O的切線,∴∠BCD=∠E,
又∠CBD=∠EBC,∴△BCD∽△BEC,
∴$\frac{BC}{BE}=\frac{BD}{BC}=\frac{CD}{EC}$,
又tan∠CED=$\frac{CD}{EC}$=$\frac{1}{2}$,
∴$\frac{BD}{BC}=\frac{CD}{EC}=\frac{1}{2}$
設(shè)BD=x,則BC=2x,
又BC2=BD•BE,∴(2x)2=x(x+6),即3x2-6x=0,
解得x=2,即BD=2,
∴OA=OB=OD+DB=3+2=5.

點(diǎn)評(píng) 本題考查直線是圓的切線的證明,考查線段長的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.雙曲線x2-$\frac{y^2}{2}$=1的漸近線方程為( 。
A.x±2y=0B.2x±y=0C.$x±\sqrt{2}y=0$D.$\sqrt{2}x±y=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線${y^2}-\frac{x^2}{m}=1$的離心率e∈(1,2),則m的取值范圍是(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線2x2-y2=1的漸近線方程是( 。
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知拋物線y2=4x的準(zhǔn)線與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0.b>0)$的一條漸近線交于點(diǎn)P(x0,-2),則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1和雙曲線C2:$\frac{{y}^{2}}{^{2}}$-$\frac{{x}^{2}}{{a}^{2}}$=1,其中b>a>0,則關(guān)于雙曲線C1與C2的命題.
①漸近線相同;
②焦點(diǎn)相同;
③離心率e1,e2滿足$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=1;
④兩個(gè)雙曲線焦點(diǎn)在同一圓上,
其中所有正確的命題序號(hào)為(  )
A.①②③B.①③④C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)計(jì)算:2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$;
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x-3),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$a={log}_{\frac{2}{5}}2,b={(\frac{1}{2})}^{\frac{1}{5}},c={2}^{\frac{2}{5}}$,則a,b,c的大小關(guān)系是( 。
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在極坐標(biāo)系中,從四條曲線C1:ρ=1、C2:θ=$\frac{π}{3}$(ρ≥0)、C3:ρ=cosθ、C4:ρsinθ=1中隨機(jī)選取兩條,記它們的交點(diǎn)個(gè)數(shù)為隨機(jī)變量ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案